प्रश्न-पत्र की योजना 2023-24

कक्षा $-10^{\text {th }}$
विषय - विज्ञान
अवधि - 3 घण्टे 15 मिनट पूर्णांक - 80

1. उद्देश्य हेतु अंकभार -

क्र.स.	उद्देश्य	अंकभार	प्रतिशत			
1.	ज्ञान	20	25			
2.	अवबोध	21	26.25			
3.	ज्ञानोपयोग / अभिव्यक्ति	19	23.75			
4.	कौशल / मौलिकता	20	25			
योग					80	100

2. प्रश्नों के प्रकारवार अंकभार -

क्र. सं.	प्रश्नों का प्रकार	प्रश्नों की संख्या	अंक प्रति प्रश्न	कुल अंक	प्रतिशत (अंको का)	प्रतिशत (प्रश्नों का)	संभावित समय
1.	वस्तुनिष्ठ	15	1	15	18.75	29.40	15
2.	रिक्त स्थान	7	1	7	8.75	13.73	7
3.	अतिलघुत्तरात्मक	10	1	10	12.50	19.61	20
4.	लघुत्तरात्मक	12	2	24	30.00	23.54	70
5.	दर्घउत्तरीय	4	3	12	15.00	7.84	48
6.	निबंधात्मक	3	4	12	15.00	5.88	35
	योग	51		80	100	100	195 मिनट

विकल्प योजना : खण्ड 'स' एवं 'द' में हैं
3. विषय वस्तु का अंकभार -

क्र.स.	विषय वस्तु	अंकभर	प्रतिशत
1	रासयनिक अभिक्रियाएँ एवं समीकरण	6	7.50
2	अम्ल, क्षारक एवं लवण	7	8.75
3	धातु और यौगिक	5	6.25
4	कार्बन एवं उसके यौगिक	7	8.75
5	जैव प्रक्रम	8	10.00
6	नियंत्रण एवं समन्वय	6	7.5
7	जीवों में प्रजनन	7	8.75
8	आनुवंशिकता	4	5.00
9	प्रकाश परावर्तन तथा अपवर्तन	8	10.00
10	मानव नेत्र तथा रंग बिरंगाा संसार	4	5.00
11	विधुत	7	8.75
12	विधुत धारा का चुंबकीय प्रभाव	6	7.5
13	हमारा पर्यावरण	5	6.25

अंक भार - 6

प्रश्न-3 = वस्तुनिष्ठ-1, लघु-1, दीर्घ -1

निम्न प्रश्नों के उत्तर का सही विकल्प चयन कीजिए -
(1). $\mathrm{F}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$

ऊपर दी गयी अभिक्रिया किस प्रकार की है-
(1) संयोजन
(2) द्विविस्थापन
(3) वियोजन
(4) विस्थापन
(4)
(2). नीचे दी गई अभिक्रिया के संबंध में कौनसा कथन असत्य है ? $2 \mathrm{PbO}_{(s)}+\mathrm{C}_{(s)} \rightarrow \mathbf{2 P b _ { (s) }}+\mathrm{CO}_{2(\mathrm{~g})}$
(1) सीसा अपचयित हो रहा है
(2) कार्बन डाई ऑक्साइड उपचयित हो रहा है
(3) कार्बन उपचयित हो रहा है
(4) लेड ऑक्साइड अपचयित हो रहा है
(A) 1,2
(B) 1,3
(C) 1,2,3
(D) सभी
(A)
(3). वातावरण में चांदी के ऊपर काली परत चढ़ाने की प्रक्रिया है -
(RBSE 2022)
(1) अपचयन
(2) संक्षारण
(3) विकृत गंधिता
(4) द्विविस्थापन
(4). लौह-चूर्ण पर तनु HCl अम्ल डालने से क्या होता है, सही विकल्प चुने -
(1) H_{2} गैस एवं FeCl_{3} बनता है
(2) Cl_{2} गैस एवं $\mathrm{Fe}(\mathrm{OH})_{3}$ बनता है
(3) कोई अभिक्रिया नहीं होती है
(4) आयरन लवण एवं जल बनता है
(5). प्रकाश संश्लेषण अभिक्रिया में कौनसी गैस प्रयुक्त है ?
(1) NO_{2}
(2) CO_{2}
(3) CH_{4}
(4) $\mathrm{C}_{2} \mathrm{H}_{6}$
(6). किसी रासायनिक अभिक्रिया में पदार्थ जिनमें रासायनिक परिवर्तन होता है, उन्हें क्या कहा जाता है-
(1) उत्पाद
(2) अभिकारक
(3) उत्प्रेरक
(4) कोई नहीं
(2)
(7). $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$ मैग्नीशियम के दहन की अभिक्रिया किस प्रकार की अभिक्रिया का उदाहरण है ? (RBSE 2022,2017)
(1) वियोजन
(2) विस्थापन
(3) संयोजन
(4) कोई नहीं
(3)

व्याख्या - उत्पाद MgO , मैग्नीशियम रिबन का वायु में दहन करने पर वॉच ग्लास में उत्पाद के रूप में मैग्नीशियम ऑक्साइड का श्वेत चूर्ण प्राप्त होता है। यह अभिक्रिया संयोजन एवं ऑक्सीकरण अभिक्रिया का उदाहरण है।
(8). रासायनिक समीकरणों को संतुलित करने की सामान्य विधि को क्या कहते हैं ?
(1) हिट एंव ट्रायल
(2) विस्थापन
(3) संयोजन
(4) कोई नहीं
(9). कंकाली समीकरण किसे कहते है।

उत्तर- जब अभिकारकों व उत्पादों को रासायनिक सूत्र के रूप में लिखकर रासायनिक समीकरण में प्रदर्शित किया जाता है तो ऐसा समीकरण कंकाली रासायनिक समीकरण कहलाता है।
(10). वायु में जलाने से पहले मैग्नीशियम रिबन को साफ क्यों किया जाता है ?
उत्तर- मैग्नीशियम पर वायु के साथ क्रिया करने से अक्रिय ऑक्साइड की परत जम जाती है। इस कारण इसे रेगमाल से साफ किया जाता है।
(11). दानेदार जस्ते पर तनु सल्फ्यूरिक अम्ल मिलाने पर कौनसी गैस मुक्त होती है।
उत्तर- हाइड्रोजन गैस

$$
\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \uparrow
$$

(12). कोयले का दहन किस प्रकार की अभिक्रिया का उदाहरण है-

उत्तर- संयोजन अभिक्रिया

$$
C_{(s)}+O_{2_{(k)}} \rightarrow \mathrm{CO}_{2_{(k)}}
$$

(13). संयोजन अभिक्रिया को उदाहरण सहित समझाइए।
(RBSE 2015,2016,2023)
उत्तर- ऐसी रासायनिक अभिक्रिया जिसमें दो या दो से अधिक अभिकारक मिलकर एकल उत्पाद का निर्माण करते है संयोजन अभिक्रिया कहलाती है।

बिना बुझा चुना बुझा हुआ चुना

व्याख्या - कैल्सियम ऑक्साइड (बिना बुझा चूना)जल के साथ क्रिया करके एकल उत्पाद कैल्सियम हाइड्रोक्साइड (बुझा हुआ चूना) प्राप्त होता है।
(2) $H_{2(\mathrm{~g})}$ तथा $O_{2(\mathrm{~g})}$ से जल का निर्माण
$2 \mathrm{H}_{2_{[8)}}+\mathrm{O}_{2_{[8)}} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(t)}$
(14). ऊष्माक्षेपी रासायनिक अभिक्रिया किसे कहते है उदाहरण सहित समझाइए -
(RBSE 2022)
उत्तर- ऐसी रासायनिक अभिक्रिया जिनमें उत्पाद निर्माण के साथ-साथ ऊष्मा भी उत्पन्न होती है। ऊष्माक्षेपी रासायनिक अभिक्रिया कहलाती है।
उदाहरण - (1) प्राकृतिक गैस का दहन

$$
\mathrm{CH}_{4_{(8)}}+2 \mathrm{O}_{2_{(8)}} \rightarrow \mathrm{CO}_{2_{(8)}}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\text { ऊर्जा }
$$

(2) श्वसन भी एक ऊष्माक्षेपी अभिक्रिया है क्योंकि हम जानते है भोजन के पाचन क्रिया के समय खाद्य पदार्थ छोटे-छोटे टुकड़ो में टूट जाते है। जैसे - चावल, आलू तथा ब्रेड में कार्बोहाइड्रेट होता है इन कार्बोहाइड्रेट के टूटने से ग्लूकोज प्राप्त होता है यह ग्लूकोज हमारे शरीर की कोशिकाओं में उपस्थित ऑक्सजीन से मिलकर हमें ऊर्जा प्रदान करता है।
श्वसन- $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(a q)}+6 \mathrm{O}_{2_{(8)}} \rightarrow 6 \mathrm{CO}_{2_{(z)}}+6 \mathrm{H}_{2} \mathrm{O}_{(l)}+$ ऊर्जा
(3) सब्जियों (वनस्पति द्रव्य) का विद्यटित होकर कम्पोस्ट बनना भी ऊष्माक्षेपी अभिक्रिया का ही उदाहरण है।
(15). दीवारों पर सफेदी करने में किसके विलयन का उपयोग किया जाता है-

उत्तर-
$\mathrm{CaO}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(t)} \rightarrow \underset{\text { (दि) }}{ } \mathrm{Ca}(\mathrm{OH})_{2(t)}$
इस अभिक्रिया में निर्मित बुझे हुए चुने के विलयन का उपयोग दीवारों की सफेदी करने के लिए किया जाता है कैल्सियम हाइड्रॉक्साइड वायु में उपस्थित CO_{2} के साथ धीमी गति से क्रिया करके CaCO_{3} की चमकदार परत का निर्माण कर देता है।
$\mathrm{Ca}(\mathrm{OH})_{2_{(a g)}}+\mathrm{CO}_{2_{(z)}} \rightarrow \mathrm{CaCO}_{3_{(8)}}+\mathrm{H}_{2} \mathrm{O}_{(t)}$
(16). संगमरमर का रासायनिक सूत्र है।

उत्तर- CaCO_{3}
(17). वियोजन अभिक्रिया (अपघटन) को उष्मीय, प्रकाश तथा विद्युत अपघटन के उदाहरण द्वारा समीकरण सहित समझाइए।
(RBSE 2015,2023)
उत्तर- ऐसी रासायनिक अभिक्रिया जिसमें एकल अभिकर्मक ऊष्मा, प्रकाश या विद्युत द्वारा अपघटित होकर छोटे-छोटे उत्पादों का

निर्माण करता है वियोजन अभिक्रिया कहलाती है। वियोजन अभिक्रिया में ऊष्मा अवशोषित होती है अतः इन्हे ऊष्माशोषी अभिक्रिया भी कहते है।
उदा.- ऊष्मीय वियोजन -
(1)
$2 \mathrm{FeSO}_{4(\mathrm{~s})} \xrightarrow{\text { डूला }} \mathrm{Fe}_{2} \mathrm{O}_{3_{[/]}}+\mathrm{SO}_{2_{(\varepsilon)}}+\mathrm{SO}_{3(\mathrm{~g})}$

(2)

उपयोग - सीमेंट निर्माण
(3)

2. विद्युत अपघटन- जल का विद्युत अपघटन करवाने पर एनोड पर O_{2} गैस तथा कैथोड पर H_{2} गैस मुक्त होती है।
(RBSE 2014)

इस क्रियाकलाप में H_{2} व O_{2} गैस $2: 1$ में प्राप्त होती है।
3. प्रकाशीय अपघटन -
(1)

(2) $2 A g B r_{(s)} \xrightarrow{\text { 鞄 } \text { ण परकाश }} 2 A g_{(s)}+B r_{(g)}$

इस अभिक्रिया का उपयोग श्याम श्वेत फोटोग्राफी में किया जाता है।
(18). प्रकाश संश्लेषण (ग्लूकोस निर्माण) की रासायनिक समीकरण लिखिए -
उत्तर-
$6 \mathrm{CO}_{2_{\text {(aq) }}}+12 \mathrm{H}_{2} \mathrm{O}_{(1)} \xrightarrow[\text { सूर्य - पकोगेंजिज }]{\text { सेश }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6_{(a q)}}+6 \mathrm{O}_{2_{(q)}}+6 \mathrm{H}_{2} \mathrm{O}_{(1)}$
(19). ऊष्माक्षेपी एवं ऊष्माशोषी अभिक्रियाओं को समझाइए -

उत्तर- नोट - इस प्रश्न का उत्तर प्रश्न संख्या 14 व 15 के उत्तरों को समेकित रूप से लिखकर समझाया जा सकता है।
(20). संयोजन व वियोजन अभिक्रिया परस्पर एक-दूसरे की विपरीत होती है क्यों ? समझाइए-
उत्तर- नोट - इस प्रश्न का उत्तर प्रश्न संख्या 13 व 17 के उत्तरों को समेकित रूप से लिखकर समझाया जा सकता है।
(21). 2 g बेरियम हाइड्रॉक्साइड में 1 g अमोनियम क्लोराइड मिलाने पर होने वाली रासायनिक अभिक्रिया की समीकरण लिखिए-
उत्तर- $\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH}$
(22). विस्थापन अभिक्रिया को समझाइए-

उत्तर- ऐसी रासायनिक अभिक्रिया जिसमें अधिक सक्रिय (क्रियाशील) तत्व द्वारा कम सक्रिय तत्व को उसके यौगिक (विलयन) से विस्थापित कर देता है। विस्थापन अभिक्रिया कहलाती है।
जैसे - कॉपर सल्फेट के विलयन में लोहे की कील को डूबोने पर लोहे की कील का रंग भूरा हो जाता है तथा कॉपर सल्फेट के विलयन का नीला रंग मलीन पड़ जाता है विस्थापन अभिक्रिया का ही उदाहरण है।

$$
\begin{aligned}
& \text { कीस }
\end{aligned}
$$

उदा.- $\mathrm{Zn}_{(s)}+\mathrm{CuSO}_{4_{(s)}} \rightarrow \mathrm{ZnSO}_{4_{(a s)}}+\mathrm{Cu}$
(RBSE 2014)

$$
\mathrm{Pb}_{(s)}+\mathrm{CuCl}_{2_{(a)\rangle}} \rightarrow \mathrm{PbCl}_{2_{\mid(a)}}+\mathrm{Cu}_{(s)}
$$

जिंक तथा लेड कॉपर की अपेक्षा अधिक क्रियाशील तत्त्व है
(23). द्विविस्थापन अभिक्रिया को उदाहरण सहित समझाइए।

उत्तर- वे अभिक्रियाएँ जिमनें अभिकारकों के बीच आयनों का आदानप्रदान होता है उन्हें द्विविस्थापन अभिक्रियाएँ कहते है।
उदा.-
(RBSE 2014)

2. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}$
(24). अवक्षेपण अभिक्रिया किसे कहते है। (RBSE 2014)

उत्तर- ऐसी रासायनिक द्विविस्थापन अभिक्रिया जिसमें अवक्षेप का निर्माण होता है जो जल में अविलेय होता है ऐसी अभिक्रिया अवक्षेपण अभिक्रिया कहलाती है।

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{SO}_{4(a q)}+\mathrm{BaCl}_{2(a q)} \rightarrow \underset{\text { अद्येप }}{\mathrm{BaSO}_{4(s)}}+2 \mathrm{NaCl}_{(a q)} \\
& \mathrm{Al}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{AlCl}_{3}+\mathrm{BaSO}_{4}
\end{aligned}
$$

(25). कॉपर का कॉपर आक्साइड में उपचयन (आक्सीकरण) की समीकरण लिखिए-
उत्तर- $2 \mathrm{Cu}+\mathrm{O}_{2} \xrightarrow{\text { तामन }} \underset{\text { काली परनल }}{2 \mathrm{CuO}}$
(26). $\mathrm{CuO}+\mathrm{H}_{2} \xrightarrow{\Delta} \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$ अभिक्रिया में किस पदार्थ का आक्सीकरण व अपचयन हो रहा है। इस प्रकार की अभिक्रिया का एक अन्य उदाहरण दीजिए। (RBSE 2016,2017,2023)

अथवा
उपचयन (आक्सीकरण)अभिक्रिया को उदाहरण सहित समझाइए अथवा
अपचयन अभिक्रिया को उदाहरण सहित समझाइए।
(RBSE 2022)
उत्तर- जिन पदार्थो में आक्सीजन की वृद्धि होती है उनका उपचयन होता है (आक्सीकरण अभिक्रिया) तथा जिनमें O_{2} की कमी या H_{2} की वृद्धि हो उनका अपचयन होता है। (अपचयन अभिक्रिया)

इस अभिक्रिया में कॉपर आक्साइड (CuO) में ऑक्सीजन का हास हो रहा है। इसलिए यह अपचयित हुआ है तथा H_{2} में ऑक्सीजन की वृद्धि होने से यह उपचयित हुआ है।

अन्य उदा.

(RBSE 2022)
कार्बन उपचयित होकर CO तथा ZnO अपचयित होकर Zn बनता है।
(27). रेडॉक्स अभिक्रियाएं (उपचयन-अपचयन) किसे कहते है-

उत्तर- ऐसी रासायनिक अभिक्रिया जिसमें एक अभिकारक उपचयित तथा दूसरा अभिकारक अपचयित होता है रेडॉक्स अभिक्रिया कहलाती है।
(RBSE 2014,2016)

अपचयित
2. $\mathrm{MnO}_{2}+\underset{\text { उपचयित }}{4 \mathrm{HCl} \longrightarrow} 2 \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$

इस अभिक्रिया में $\mathrm{HCl}, \mathrm{Cl}_{2}$ में उपचयित तथा MnO_{2}, MnCl_{2} में अपचयित हुआ है।
(28). निम्न अभिक्रियाओं में उपचयित तथा उपचयित पदार्थो की पहचान कीजिए।

1. $4 \mathrm{Na}_{(g)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}$
2. $\mathrm{CuO}_{(\mathrm{s})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{Cu}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(t)}$
(RBSE 2023)
उत्तर- (1) $4 \mathrm{Na}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}$
इस अभिक्रिया में Na उपचयित होकर $\mathrm{Na}_{2} \mathrm{O}$ बनाता है।
(2)

CuO अपचयित तथा H_{2} उपचयित होता है।
(29). एक भूरे रंग का चमकदार तत्व ' X ' को वायु की उपस्थिति में गर्म करने पर वह काले रंग का हो जाता है इस तत्व ' \mathbf{X} ' एवं उस काले रंग के यौगिक का नाम बताइए -
उत्तर- तत्व ' X ' कॉपर है। तथा काले रंग का यौगिक कॉपर (II) ऑक्साइड (CuO) है। कॉपर भूरे रंग का चमकदार तत्व है। इसको वायु की उपस्थिति में गर्म करने पर यह काले रंग के कॉपर (II)ऑक्साइड में बदल जाता है।
$2 \mathrm{Cu}+\mathrm{O}_{2} \xrightarrow{\text { न्रूणन }} 2 \mathrm{CuO}$
(30). संक्षारण किसे कहते है उदाहरण दीजिए -

उत्तर- जब कोई धातु अपने आस-पास अम्ल, आर्द्रता आदि के सम्पर्क मे आती है, तब ये संक्षारित होती है। और इस प्रक्रिया को संक्षारण कहते हैं। उदा.- लोहे पर जंग लगना, चाँदी के ऊपर काली पर्त व तांबे के ऊपर हरी पर्त चढ़ना संक्षारण के उदाहरण है। संक्षारण के कारण कार के ढांचे, पुल, लोहे की रेलिंग, जहाज तथा धातु, विशेषकर लोहे से बनी वस्तुओं की बहुत क्षति होती है। लोहे का संक्षारण एक गंभीर समस्या है। इसलिए लोहे की वस्तुओ को हम पेंट करते है।
(31). विकृतगंधिता को उदाहरण सहित समझाइए - (RBSE2017)

उत्तर- वसा युक्त अथवा तैलीय खाद्य सामग्री को लम्बे समय तक रखा रहने से वह उपचयित होकर विकृतगंधी हो जाते है जिसके कारण उनका स्वाद तथा गंध बदल जाते है। प्राय: तैलीय तथा वसा युक्त खाद्य सामग्रियों में उपचयन रोकने वाले पदार्थ (प्रतिऑक्सीकारक) मिलाये जाते है। वायुरोधी बर्तनों में खाद्य सामग्री रखने से उपचयन की गति धीमी हो जाती है। इसी कारण चिप्स की थैलियों में N_{2} जैसे अक्रिय गैस प्रयुक्तत करते है ताकि चिप्स का उपचयन न हो सके।
(32). निम्न की रासायनिक समीकरण संतुलित कीजिए -
(1) $2 \mathrm{NH}_{3}+3 \mathrm{CuO} \rightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ (RBSE 2022)
(2) $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$
(1). निम्न को प्रबलता के घटते क्रम में व्यवस्थित कीजिए
(1) जठर रस व नीम्बू रस
(2) शुद्ध जल व रक्त
(3) मिल्क ऑफ मैग्नीशियम एवं सोडियम हाइड्रॉक्साइड

उत्तर- (i) जठर रस > नीम्बू रस
(ii) रक्त > शुद्ध जल
(iii) सोडियम हाइड्रॉक्साइड > मिल्क ऑफ मैग्नीशियम
(2). NaOH का 10 mL विलयन, HCl के 8 mL विलयन से पूर्णत: उदासीन हो जाता है यदि हम NaOH के उसी विलयन का 20 mL ले तो इसे उदासीन करने के लिए के HCl उसी विलयन की कितनी मात्रा की आवश्यकता होगी ?
(1) 4 mL
(2) 8 mL
(3) 12 mL
(4) 16 mL
(4)
(3). अपच का उपचार करने के लिए निम्न में से किस औषधि का उपयोग होता है।
(1) एंटीबायोटिक (प्रतिजैविक)
(2) ऐनालजैसिक
(3) ऐन्टैसिड
(4) एंटीसेप्टिक
(3)
(4). रक्त का pH मान होता है।
(1) 0
(2) 2
(3) 7.4
(4) 9
(3)
(5). कोई विलयन अंडे के पिसे हुए कवच से अभिक्रिया कर एक गैस उत्पन्न करता है जो चूने के पानी को दूधिया कर देती है, इस विलयन में क्या होगा
(1) NaCl
(2) HCl
(3) LiCl
(4) KCl
(2)
(6). कोई विलयन लाल लिट्मस को नीला कर देता है, इसका pH संभवत: क्या होगा
(1) 1
(2) 4
(3) 5
(4) 10
(7). निम्न में से प्राकृतिक सूचक है
(1) मैथिल ऑरेन्ज
(2) फिनॉल्फथेलिन
(3) लिट्मस पेपर
(4) उपरोक्त सभी
(3)

रिक्त स्थानों की पूर्ति कीजिए -
(8). संतरा में उपस्थित अम्ल का रासायनिक नाम.............. है ?
(RBSE 2022)
उत्तर- सिट्रिक अम्ल
(9). ईमली में... \qquad अम्ल पाया जाता है ?
उत्तर- टार्टरिक अम्ल
(10). शुद्ध जल (आसुत) की \qquad P^{H} होती है ?
उत्तर- 7.0
(11). जब वर्षा जल की P^{H} का मान 5.6 से कम हो जाता है तो
\qquad कहलाती है ?
(4) उत्तर- हाइड्रोजन गैस
(12). \qquad नामक पदार्थ जो क्लोरीन से क्रिया करके विरंजक चूर्ण बनाता है ?
उत्तर- शुष्क बुझा हुआ चूना $\mathrm{Ca}(\mathrm{OH})_{2}$
(13). \qquad नामक लवण का उपयोग भोजन में करते है ?
उत्तर- सोडियम क्लोराइड (NaCl)
(14). सिरका में उपस्थित अम्ल का रासायनिक नाम. \qquad है ?
उत्तर- एसीटिक अम्ल
(15). लिट्मस नामक प्राकृतिक सूचक किस पौधे से प्राप्त होता है।

उत्तर- लाइकेन (थैलोफाइटा वर्ग)
(16). गंधीय सूचक के तीन उदाहरण लिखिए ।

उत्तर- वैनिला, प्याज एवं लौंग का तेल
(17). धात्विक ऑक्साइड किस प्रवृत्ति के होते हैं।

उत्तर- क्षारीय
(18). अधात्विक ऑक्साइड किस प्रवृत्ति के होते हैं।

उत्तर- अम्लीय
(19). जठर रस का pH कितना होता है

उत्तर- लगभग 1.2
(20). किस ग्रह का वायुमंडल सल्फ्यूरिक अम्ल के पीले श्वेत बादलो से बना है।
उत्तर- शुक्र
(21). मानव शरीर सामान्यत किस pH परास के मध्य कार्य करता है ?
उत्तर- 7.0 से 7.8
(22). एक ऐन्टैसिड का नाम लिखिए

उत्तर- मिल्क ऑफ मैग्नीशिया
(23). प्रमुख प्राकृतिक सूचकों के नाम लिखिए -

उत्तर- लिटमस पत्र, लाल पत्ता गोभी , हल्दी , हायड्रेजिया , पेटूनिया एवं जेरानियम
(24). धातु जब अम्ल के साथ क्रिया करती है तो कौनसी गैस उत्स्सर्जित करती है तथा नामांकित चित्र बनाइए -

Note:- जब धातु अम्ल के साथ क्रिया करती है, तो लवण का निर्माण करती है। एवं साथ में H_{2} गैस मुक्त करती है।
(25). मधुमक्खी एवं नेटल पौधे के डंक में कौनसा अम्ल होता है।

उत्तर- अम्लीय वर्षा

उत्तर- मेथैनॉइक अम्ल
(26). प्लास्टर ऑफ पेरिस का रासायनिक सूत्र लिखिए

उत्तर- $\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ (कैल्सियम सल्फेट अर्ध हाइड्रेट)
(27). P.O.P. निर्माण की रासायनिक समीकरण लिखिए।

उत्तर- $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{373 \mathrm{k}} \mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}+1 \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$

(28). P.O.P. के दो उपयोग लिखिए

उत्तर- 1. सजावटी सामान एवं खिलौने बनाने में
2. टूटी हड्डी पर प्लास्टर चढ़ाने में
3. सतह को चिकना बनाने में
(29). दो संश्लेषित सूचकों के नाम लिखिए। (RBSE 2015)

उत्तर- मेथिल ऑरेन्ज, फिनॉल्फथेलिन
(30). फिनॉल्फथेलिन क्षार के साथ क्रिया करने पर कैसा रंग देता है ?
उत्तर- गुलाबी रंग

(31). बेकिंग पाउडर किसे कहते हैं।

(RBSE 2016)
उत्तर- खाने का सोडा $\left(\mathrm{NaHCO}_{3}\right)$ व टार्टरिक अम्ल के मिश्रण को बेकिंग पाउडर कहते हैं
उपयोग - बेंकिंग पाउडर बनाने में,जो बेकिंग सोडा (सोडियम हाइड्रोजनकार्बोनेट) एवं टार्टरिक अम्ल जैसा एक मंद खाद्य अम्ल का मिश्रण है। जब बेकिंग पाउडर को गर्म किया जाता है। या जल में मिलाया जाता है। तो निम्न अभिक्रिया होती है।
$\mathrm{NaHCO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+$ अम्ल का सोडियम लवण
इस अभिक्रिया से उत्प्पन्न कार्बन डाइऑक्साइड के द्वारा पावरोटी या केक में खमीर उठाया (फूल लाया) जा सकता है, तथा इससे ये मुलायम एवं स्पंजी हो जाता है।
(32). पेयजल को जीवाणु रहित बनाने के लिए किसका उपयोग किया जाता है।
(RBSE 2014)
उत्तर- विरंजक चूर्ण CaOCl_{2}
(33). कोई दो प्रबल, अम्ल एंव प्रबल क्षार के नाम लिखिए

उत्तर- प्रबल अम्ल- $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$
प्रबल क्षार- $\mathrm{NaOH}, \mathrm{KOH}$
(34). निम्न के रासायनिक सूत्र लिखिए-

उत्तर- 1. विरंजक चूर्ण $=\mathrm{CaOCl}_{2}$
2. बैकिंग सोडा $=\mathrm{NaHCO}_{3}$
3. धावन सोडा $=\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
4. जिप्सम $=\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(35). निम्न का मिलान कीजिए
(1) सिरका
i. टार्टरिक अम्ल
(2) इमली
ii. एसीटिक अम्ल
(3) टमाटर
iii. लैक्टिक अम्ल
(4) खट्टा दही
iv. ऑक्जैलिक अम्ल

उत्तर- 1-(ii), 2-(i), 3-(iv) , 4-(iii)
(36). उदासीनीकरण अभिक्रिया किसे कहते हैं (RBSE 2023)

उत्तर- अम्ल एवं क्षारक की अभिक्रिया के फलस्वरूप लवण तथा जल प्राप्त होते हैं। इसे उदासीनीकरण अभिक्रिया कहते है।

$$
\mathrm{NaOH}_{(a q)}+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(i)}
$$

(37). पीतल एवं तांबे के बर्तनों में दही एवं खट्टे पदार्थ क्यों नहीं रखने चाहिए।
उत्तर- दही व खट्टे पदार्थ अम्लीय होते हैं। जो पीतल व तांबे के बर्तनों (धात्विक ऑक्साइड) क्षारीय प्रकृति के होने कारण अम्ल के साथ अभिक्रिया कर विषैले लवण बनाते हैं।
(38). $\mathrm{HCl}, \mathrm{HNO}_{3}$ आदि जलीय विलयन में अम्लीय अभिलक्षण क्यों प्रदर्शित करते हैं जबकि एल्कोहल एवं ग्लूकोज जैसे यौगिकों के विलयनो में अम्लीयता के अभिलक्षण नहीं प्रदर्शित होते है ?
उत्तर- $\mathrm{HCl}, \mathrm{HNO}_{3}$ के विलयन में H^{+}आयन मुक्त होने के कारण विद्युत का चालन करते हैं जबकि ग्लूकोज, एल्कोहल का विलयन विद्युत का चालन नहीं करता है क्योंकि आयनीकरण नहीं होता हैं। अर्थात विलयन में विधुत धारा का प्रवाह आयनों द्वारा होता हैं।

(39). शुष्क हाइड्रोक्लोरिक गैस के लिटमस पत्र के रंग को क्यों नहीं बदलती है ?
उत्तर- शुष्क हाइड्रोक्लोरिक गैस हाइड्रोजन आयन उत्पन्न नहीं करती है इस कारण से शुष्क लिटमस के रंग को नहीं बदलती है
(40). अम्ल को तनु कृत करते समय यह क्यों अनुशंसित करते हैं कि अम्ल को जल में मिलाना चाहिए न कि जल को अम्ल में ?
(RBSE 2017)
उत्तर- जल में अम्ल और क्षारक के घुलने की प्रक्रिया उष्माक्षेपी होती है अम्ल को सदैव धीरे-धीरे तथा जल को लगातार हिलाते हुए जल में मिलाना चाहिए सांद्र अम्ल में जल मिलाने पर उत्पन्र हुई उष्मा के कारण मिश्रण आस्फलित होकर बाहर आ सकता है तथा आप जल सकते हैं साथ ही अत्यधिक स्थानीय ताप के कारण प्रयोग में उपयोग किया जा रहा कांच का पात्र भी टूट सकता है इसलिए सदैव अम्ल को तनु कृत करते समय अम्ल को जल में मिलाना चाहिए ना कि जल को अम्ल में

(41). तनुकरण किसे कहते हैं।

उत्तर- जल में अम्ल या क्षारक मिलाने पर आयन की सांद्रता $\left(\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{OH}^{-}\right)$में प्रति इकाई आयतन में कमी हो जाती है, जिसे तनुकरण कहते है।
(42). सोडियम हाइड्रॉक्साइड (क्षार)की जिंक धातु के साथ होने वाली अभिक्रिया की रासायनिक समीकरण लिखिए।
(RBSE 2017)
उत्तर- $\quad 2 \mathrm{NaOH}+\mathrm{Zn} \longrightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
(43). जल की अनुपस्थिति में अम्ल का व्यवहार अम्लीय क्यों नहीं होता है
उत्तर- जल की अनुपस्थिति में अम्लों से हाइड्रोजन-आयनों $\left(H^{+}\right)$ का विलगन नहीं हो सकता है, जिससे अम्लीय व्यवहार प्रदर्शित नहीं होता है।
(44). कठोर जल को मृदु बनाने हेतु किस सोडियम यौगिक का उपयोग होता है।
उत्तर- सोडियम कार्बोनेट $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$
(45). क्रिस्टलन का जल किसे कहते हैं।

उत्तर- लवण के एक सूत्र इकाई में जल के निश्चित अणुओं की संख्या को क्रिस्टलन का जल कहते हैं। $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
 $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (जिप्सम)
(46). ताजे दूध के pH मान 6 होता है दही बन जाने पर इसके के pH मान में क्या परिवर्तन होगा।
उत्तर- जब ताजा दूध दही में बदल जाता है, तो $\mathbf{p H}$ का मान कम हो जाएगा। क्योंकि दही दूध की अपेक्षा अधिक अम्लीय होता है।
(47). प्लास्टर ऑफ पेरिस को आर्द्र रोधी बर्तन में क्यों रखा जाना चाहिए।
उत्तर- क्योंकि यह आर्द्रता में जल को अवशोषित कर ठोस पदार्थ जिप्सम बनाता है। जिससे P.O.P के गुण नष्ट हो जाते हैं।
(48). विरंजक चूर्ण के निर्माण की विधि, समीकरण एवं इसके दो उपयोग लिखिए
(RBSE 2014)
उत्तर- शुष्क बुझे हुए चूने $\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$ पर क्लोरीन की क्रिया से विरंजक चूर्ण बनाया जाता है।

$$
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{CaOCl}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

उपयोग - (1) वस्न उद्योग में सूती एवं लिनेन के विरंजन के लिए कागज की फैक्ट्री में लकड़ी की मज्जा एवं लाउंड्री में साफ कपड़ो के विरंजन के लिए
(2) कई रासायनिक उद्योगो में एक उपचायक के रूप में
(49). बैकिंग सोडा बनाने की विधि समीकरण एवं इसके उपयोग लिखिए।
(RBSE 2014)
उत्तर- सोडियम क्लोराइड मूल पदार्थ के साथ $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ एवं NH_{3} क्रिया से बेकिंग सोडा बनाया जाता है।

$$
\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaHCO}_{3}
$$

उपयोग - बेकिंग पाउडर बनाने में ।

रसोई घर में स्वादिष्ट खस्ता पकोड़े बनाने में (RBSE 2014) -ऐन्टैसिड के रूप में ।
-अग्निशामक यंत्र में ।
-पाव रोटी, केक बनाने में । $\left(\mathrm{CO}_{2}\right.$ उत्पन्न)
(50). धावन सोडा कैसे प्राप्त किया जा सकता है। इसका समीकरण एवं उपयोग लिखिए
उत्तर- सोडियम कार्बोनेट के क्रिस्टलीकरण से धावन सोडा प्राप्त होता है।

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+10 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}
$$

उपयोग- - साबुन, काँच एवं कपड़ा उद्योग में।

- बोरेक्स यौगिक के उत्पादन में।
(RBSE 2014, 2017) - जल की स्थायी कठोरता दूर करने में ।
(51). क्लोर-क्षार प्रक्रिया क्या है। समझाइए एवं इसका समीकरण भी दीजिए आवश्यक चित्र भी बनाइए (RBSE 2017)
उत्तर- सोडियम क्लोराइड के जलीय विलयन में विद्युत धारा प्रवाहित करने पर यह वियोजित होकर सोडियम हाइड्रोक्साइड उत्पन्न करता है। इस प्रक्रिया को क्लोर-क्षार प्रक्रिया कहते हैं। इस प्रक्रिया में निर्मित उत्पाद क्लोरीन एवं सोडियम हाइड्रॉक्साइड क्षार होते हैं।
क्लोरीन गैस ऐनोड पर मुक्त होती है। एवं कैथोड पर हाइड्रोजन गैस। कैथोड पर NaOH विलयन भी बनता है।

$$
2 \mathrm{NaCl}_{(a q)}+2 \mathrm{H}_{2} \mathrm{O}_{(i)} \rightarrow 2 \mathrm{NaOH}_{(a q)}+\mathrm{Cl}_{2(g)}+\mathrm{H}_{2(g)} .
$$

(52). pH स्केल को समझाइए ।
(RBSE 2016,2015,2014)

उत्तर-

किसी विलयन में उपस्थित हाइड्रोजन आयन की सांद्रता ज्ञात करने हेतु एक स्केल विकसित किया गया है। जिसे $\mathbf{p H}$ स्केल कहा जाता है। pH स्केल में p एक पुसांस जर्मन शब्द है जिसका अर्थ है शक्ति । pH स्केल से सामान्यतया: 0 (अधिक अम्लता) से 14 (अधिक क्षारीय) तक pH ज्ञात कर सकते है हाइड्रोनियम आयन की सांद्रता जितनी अधिक

होगी उसका pH उतना ही कम होगा। किसी भी उदासीन विलयन के pH का मान 7 होगा यदि pH स्केल में किसी विलयन का मान 7 से कम है तो वह अम्लीय विलयन होगा एवं यदि मान 7 से 14 तक बढ़ता है तो वह क्षारीय होगा अम्ल तथा क्षारक की शक्ति विलयन में क्रमशः H^{+}आयन तथा OH^{-}आयन की संख्या पर निर्भर करती है।

(53). दैनिक जीवन में pH के कोई दो महत्व समझाइए

उत्तर- 1. पौधे एवं पशु pH प्रति संवेदनशील होते हैं- हमारा शरीर 7.0 से $7.8 \mathbf{~ p H}$ परास के मध्य कार्य करता है। वर्षा जल की $\mathbf{p H}$ का मान 5.6 से कम हो जाता है तो वह अम्लीय वर्षा कहलाती है। अम्लीय वर्षा का जल जब नदी में प्रवाहित होता है तो नदी के जलीय जीवों की उत्तरजीविता कठिन हो जाती है।
2. पौधों एवं जीवों द्वारा उत्पन्न रसायनों से आत्मरक्षामधुमक्खी का डंक एवं नेटल पादप का डंक मेथैनॉइक अम्ल छोड़ता है,जिससे दर्द एवं जलन का अनुभव होता है। डंक मारे गये अंग में बेकिंग सोडा
जैसे- दुर्बल क्षारक के उपयोग से आराम मिलता है।
(54). हमारे पाचन तंत्र एवं \mathbf{p}^{H} के मध्य क्या संबंध है समझाइए ?
उत्तर- हमारा उदर हाइड्रोक्लोरिक अम्ल उत्पन्न करता है यह उदर को हानि पहुंचाए बिना भोजन के पाचन में सहायक होता है अपच की स्थिति में उदर अत्यधिक मात्रा में अम्ल उत्पन्र करता है जिसके कारण उदर में दर्द एवं जलन का अनुभव होता है इस दर्द से मुक्त होने के लिए एंटैसिड का उपयोग किया जाता है जो अम्ल की अधिक मात्रा को उदासीन करता है इसके लिए मैग्निशीयम हाइड्रोक्साइड (मिल्क ऑफ मैग्नीशिया) जैसे दुर्बल क्षारक का उपयोग किया जाता है।
(55). \mathbf{p}^{H} परिवर्तन के कारण दंत- क्षय को समझाइए ?
(RBSE 2017)
उत्तर- मुँह के \mathbf{p}^{H} का मान 5.5 से कम होने पर दांतो का क्षय प्रारंभ हो जाता है दांतो का इनेमल (दंत वल्क) कैल्शियम फॉस्फेट से बना होता है जो कि शरीर का सबसे कठोर पदार्थ है यह जल में नहीं घुलता है लेकिन मुँह की $\mathbf{p}^{\mathbf{H}}$ का मान 5.5 से कम होने पर यह संक्षारित हो जाता है मुंह में उपस्थित बैक्टीरिया, भोजन के पश्चात में अवशिष्ट शर्करा एवं खाद्य पदार्थों का निम्नीकरण करके अम्ल उत्पन्न करते हैं भोजन के बाद मुंह साफ करने से इससे बचाव किया जा सकता है मुँह की सफाई के लिए क्षारकीय दंत मंजन का

उपयोग करने से अम्ल की अधिक मात्रा को उदासीन किया जा सकता है जिसके परिणाम स्वरूप दंत क्ष्र्य को रोका जा सकता है।
(56). अम्ल एवं क्षार में प्रमुख अंतर लिखिए -

उत्तर-

अम्ल	क्षार
1. अम्ल स्वाद में खट्टा होता है।	1. क्षारकों का स्वाद कड़वा होता है।
2. अम्ल नीले लिटमस पत्र को लाल कर देता है।	2.क्षारक लाल लिटमस पत्र को नीला कर देता है।

(57). धातु कार्बोनेट / धातु हाइड्रोजन कार्बोनेट अम्ल के साथ अभिक्रिया करके कौन सी गैस उत्पन्न करते हैं रासायनिक समीकरण भी लिखिए
(RBSE 2017)
उत्तर- CO_{2}
(i) $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+2 \mathrm{HCl}(a q) \longrightarrow 2 \mathrm{NaCl}(a q)+$ $\mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{CO}_{2}$
(ii) $\mathrm{NaHCO}_{3_{(s)}}+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\text {(})}+$ $\mathrm{CO}_{2_{(8)}}$
इस उत्पादित कार्बन डाई ऑक्साइड को चूने के पानी $\mathrm{Ca}(\mathrm{OH})_{2}$ में प्रवाहित करने पर CaCO_{3} का श्षेत अवक्षेप प्राप्त होता है ।

अत्यधिक मात्रा में प्रवाहित करने पर निम्न अभिक्रिया होती है।
$\mathrm{CaCO}_{3_{(s)}}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{CO}_{2_{(g)}} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2_{(a)}}$

प्रादृतिक ग्रोत	अप्ल	प्राकृतिक घ्रोत	अम
सिका	ऐसीटिकि अम्ल (2023)	खट्टा दूध (दही)	लैक्टिक अम्ल
संतरा	सिट्रिक अम्ल (2022)	नींबू	सिट्रिक अम्ल
इमली	टार्टाक अम्ल	चोंटी का उंक	मेंथनॉइएक अम्ल (2014)
टमाटर		नेटल का उंक	मेथौनौइक अम्ल

(58). (i) गंधीय सूचक का कोई एक उदाहरण लिखिए -
(ii) यदि चूने के पानी में CO_{2} गैस को प्रवाहित करने पर यौगिक [A] का श्वेत-अवक्षेप बनता है। यदि इसमें अत्यधिक मात्रा में कार्बन डाई ऑक्साइड गैस को प्रवाहित किया जाए तो एक जल में विलेयशील पदार्थ $[\mathbf{B}]$ बनता है। $[\mathbf{A}]$ व [$\mathbf{B}]$ के रासायनिक सूत्र तथा निहित रासायनिक अभिक्रियाओं के समीकरण लिखिए। अथवा
(i) शुद्ध जल का \mathbf{P}^{H} मान लिखिए।
(ii) सोडियम कार्बोनेट के साथ हाइड्रोक्लोरिक अम्ल की अभिक्रिया से यौगिक [A] बनता है। [A] को साधारण नमक भी कहते है। [A] के जलीय विलयन में विधुत प्रवाहित करने पर सोडियम हाइड्रोक्साइड बनता है। [A] का रासायनिक नाम तथा निहित रासायनिक अभिक्रियाओं के समीकरण लिखिए।

3. धातु एवं अधातु

अंक भार - 5

प्रश्न - $4=$ वस्तुनिष्ठ-1, रिक्त स्थान-1, अति.लघु.-1, लघुरात्मक -1

वस्तुनिष्ठ प्रश्न

(1). $A l, F e$ तथा $Z n$ की अभिक्रियाशीलता का सही बढ़ता क्रम है-
(RBSE 2023)
(1) $\mathrm{Fe}<\mathrm{Zn}<A l$
(2) $\mathrm{Fe}<\mathrm{Al}<\mathrm{Zn}$
(3) $\mathrm{Al}<\mathrm{Fe}<\mathrm{Zn}$
(4) $\mathrm{Al}<\mathrm{Zn}<\mathrm{Fe}$
(1)
(2). दिये गये चित्रानुसार उपरोक्त अभिक्रिया में बनने वाली गैस को पहचानिए।
(RBSE 2022)

(1) O_{2}
(2) CO_{2}
(3) H_{2}
(4) O_{2}
(3). एक तत्त्व \mathbf{Q} मुलायम है और चाकू से आसानी से काटा जा सकता है। तत्त्व ठंडे जल के साथ तेजी से अभिक्रिया करता है। निम्नलिखित में से तत्त्व को पहचानिए। (RBSE 2022)
(1) k
(2) Ag
(3) Cu
(4) Pb
(1)
(4). वातावरण में लोहे के ऊपर भूरी परत चढ़ने की प्रक्रिया है।
(1) अपचयन
(2) संक्षारण
(3) विकृतगंधिता
(4) द्विविस्थापन
(5). धातुएँ संयोजकता कोश से इलेक्ट्रॉन त्याग कर किसका निर्माण करती है ?
(1) ॠणायन
(2) धनायन
(3) धनायन व ॠणायन दोनों
(4) किसी भी एक का निर्माण कर सकता है।
(6). कार्बन का कौनसा अपररूप विधुत का सुचालक है -
(1) ग्रेफाइड
(2) हीरा
(3) फुलरीन
(4) सभी
(7). किस धातु को चाकु से नहीं काटा जा सकता -
(1) लिथियम
(2) सोडियम
(3) पोटेशियम
(4) जिंक
(8). धातु ऑक्साइड की प्रकृति कैसी होती है -
(1) अम्लीय
(2) क्षारकीय
(3) उदासीन
(4) कोई नहीं
(9). किसी धातु X को वायु की उपस्थिति में गर्म किया जाता है। तो यह ऑक्सीजन के साथ मिलकर काले रंग का धात्विक
(II)ऑक्साइड बनाता है। धातु X है।
(1) कॉपर
(2) आयरन
(3) चांदो
(4) सोना
(1)
(10). पोटेशियम व सोडियम धातु की ठंडे जल से अभिक्रिया का प्रकार है -
(1) ऊष्माक्षेपी
(2) ऊष्माशोषी
(3) a व b दोनों
(4) कोई भी नहीं
(1)
(11). धातु , अम्ल के साथ अभिक्रिया करके कौनसी गैस बनाती है-
(1) N_{2}
(2) O_{2}
(3) Cl_{2}
(4) H_{2}
(4)
(12). सिनाबार किस धातु का अयस्क है -
(1) आयरन
(2) कॉपर
(3) मर्करी
(4) जिंक
(13). निम्न में से मिश्रातु / मिश्र धातु है-
(1) पीतल
(2) कांसा
(3) सोल्डर
(4) उपर्युक्त सभी
(14). खाद्य पदार्थो के डिब्बों पर जिंक की बजाय टिन का लेप होता है। क्योंकि -
(RBSE 2021)
(1) टिन की अपेक्षा जिंक महंगा है।
(2) टिन की अपेक्षा जिंक का गलनांक अधिक है।
(3) टिन की अपेक्षा जिंक अधिक अभिक्रियाशील है।
(4) टिन की अपेक्षा जिंक कम अभिक्रियाशील है।

रिक्त स्थान
(1). शुद्ध रूप में धातु की सतह चमकदार होती है, इस गुणधर्म को
\qquad कहते है।
उत्तर- धात्विक चमक
(2). \qquad सबसे अधिक तन्य धातु है।
उत्तर- सोना
(3). PVC का पूरा नाम............ है।

उत्तर- पॉलिवाइनिल क्लोराइड
(4). \qquad .ऐसी अधातु है, जो कमरे के ताप पर द्रव अवस्था में होती है।
उत्तर- ब्रोमीन
(5). पृथ्वी से खनित अयस्कों में मिट्टी, रेत आदि अशुद्धियाँ होती है, जिन्हें. \qquad कहते है।
उत्तर- गैंग
(6). \qquad ऐसी अधातु है, जो चमकीली होती है।
उत्तर- आयोडीन
(7). लम्बे समय तक आर्द्र वायु में रहने पर लोहे पर भूरे रंग की परत चढ़ जाती है। इस पदार्थ को. \qquad कहते है।
उत्तर- जंग
(8). लोहे को कठोर व प्रबल बनाने हेतु इसमें. \qquad मिला दिया जाता है।
उत्तर- कार्बन
(9). दो या दो से अधिक धातुओं के संमागी मिश्रण को.

कहते है।

उत्तर- मिश्रातु / मिश्र धातु
(10). लोहे में \qquad मिलाकर स्टेनलेस इस्पात प्राप्त होता है ।
(11). HNO_{3} (नाइट्रिक अम्ल) की प्रकृति............... है।

उत्तर- प्रबल ऑक्सीकारक
(12). अधातु ऑक्साइड की प्रकृति......... होती है।

उत्तर- अम्लीय
(13). \qquad ऐसी अधातु है जो विभिन्न रूपों में विद्यमान रहती है।
उत्तर- कार्बन
(14). पीतल. से बनी मिश्र धातु है।
उत्तर- ताम्बा व जस्ता
(15). पारद (मर्करी) से बनी मिश्र धातु को. कहते है।
उत्तर- अमलगम

अतिलघुरात्मक प्रश्न

(1). हथेली पर रखने पर पिघलने वाली धातु का नाम लिखो।

उत्तर- गैलियम व सीजियम को हथेली पर रखने पर दोनों धातुएँ पिघलने लगेगी, क्योंकि इनका गलनांक बहुत कम होता है।
(2). तन्यता को परिभाषित कीजिए तथा सबसे अधिक तन्य धातु का नाम लिखिए।
उत्तर- धातु को पतले तार के रूप में खींचने की क्षमता को तन्यता कहा जाता है। सोना सबसे अधिक तन्य धातु है।
(3). भर्जन व निस्तापन को परिभाषित कीजिए। (RBSE 2023,2017)

उत्तर- भर्जन- इस प्रक्रिया में अयस्क को वायु की उपस्थिति में अधिक ताप पर गर्म करके ऑक्साइड में परिवर्तित किया जाता है यह प्रक्रिया सल्फाइड (Zns) अयस्कों हेतु प्रयुक्त की जाती है। निस्तापन - इस प्रक्रिया में अयस्क को सीमित वायु में अधिक ताप पर गर्म करके ऑक्साइड में बदला जाता है। यह प्रक्रिया कर्बोनेट $\left(\mathrm{ZnCO}_{3}\right)$ अयस्कों हेतु प्रयुक्त की जाती है।
(4). धातु व अधातु में क्या अंतर है।
(RBSE 2022)
उत्तर-

धातु	अधातु
1. सामान्य ताप पर ठोस होती है। (अपवाद - पारा)	1. सामान्य ताप पर तीनों अवस्थाओं में पाई जाती है ठोस - सल्फर, फास्फोरस तरल - ब्रोमीन गैस $-\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$
2. यह तन्य तथा आघातवर्ध्य होती है।	2. भंगुर होती है।
3. ऊष्मा तथा विधुत की सुचालक होती है।	3. विधुत की कुचालक होती है। (अपवाद - ग्रेफाइट)
4. गलनांक तथा क्वथनांक बहुत अधिक होते है।	4. गलनांक तथा क्वथनांक कम होते है। (अपवाद - ग्रेफाइट)
5. धातुएँ क्षारीय ऑक्साइड बनाती है। उदा. $-A l, A u, F e, C u$	5. अधातुएँ अम्लीय तथा उदासीन ऑक्साइड बनाती है। उदा.- $H_{2}, \mathrm{Cl}_{2}, \mathrm{~N}_{2}, \mathrm{Br}_{2}$

(5). यौगिक (X) और एल्युमिनियम का उपयोग रेल की पटरियों को जोड़ने के लिए किया जाता है।
(RBSE 2018)
(i) यौगिक का नाम लिखिए। (ii) अभिक्रिया का नाम लिखिए।
(iii) इसकी अभिक्रिया लिखिए।

उत्तर- (i) यौगिक X का नाम आयरन (III) ऑक्साइड $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ है।
(ii) अभिक्रिया का नाम थर्मिट अभिक्रिया है।
(iii) $\mathrm{Fe}_{2} \mathrm{O}_{3_{(s)}}+2 \mathrm{Al}_{(s)} \rightarrow 2 \mathrm{Fe}_{(t)}+\mathrm{Al}_{2} \mathrm{O}_{3_{(s)}}+$ ऊष्मा
(6). अधात्विक ऑक्साइड की प्रकृति कैसी होती है ?
(RBSE 2017)
उत्तर- अम्लीय प्रकृति
(7). कमरे के ताप पर कौनसी धातु द्रव अवस्था में पाई जाती है ?
(RBSE 2015,2016)
उत्तर- मर्करी (Hg)
(8). सोडियम , सिलिकॉन तथा क्लोरीन में कौन सी उपधातु है ?

उत्तर- सिलिकॉन (Si)
(9). आघातवर्ध्यता किसे कहते है ?

उत्तर- कुछ धातुओं को पीटकर पतली चादर बनाया जा सकता है , इस गुणधर्म को आघातवर्ध्यता कहते है।
(10). धातुओं का उपयोग बर्तन बनाने में क्यों किया जाता है ?

उत्तर- धातुएँ ऊष्मा की सुचालक होती है , अतः इनका प्रयोग बर्तन बनाने में किया जाता है।
(11). ऊष्मा की सबसे अच्छी चालक धातु कौनसी है ?

उत्तर- सिल्वर व कॉपर
(12). कौनसी धातु ऊष्मा की कुचालक है ?

उत्तर- लेड तथा मर्करी
(13). स्कूल की घंटी धातु की क्यों बनी होती है ?

उत्तर- धातुएँ कठोर सतह से टकराने पर आवाज उतपन्न करती है। ऐसी धातुएँ ध्वानिक (सोनोरस) कहलाती है, इसी गुणधर्म के कारण घंटियाँ धातुओं की बनाई जाती है।
(14). ऐसी धातु जो कमरे के ताप पर द्रव अवस्था में होती है ?

उत्तर- मर्करी (Hg)
(15). सबसे कठोर प्राकृतिक पदार्थ कौनसा है ?

उत्तर- हीरा सबसे कठोर प्राकृतिक पदार्थ है। जो कार्बन का एक अपरूूप
है। इसका गलनांक व क्वथनांक बहुत अधिक होता है।
(16). आयनिक यौगिक क्या है ?

उत्तर- धातु से अधातु में इलेक्ट्रॉन के स्थानांतरण से बने यौगिकों को आयनिक यौगिक या वैधुत संयोजक यौगिक कहा जाता है।
(17). ऐलुमिनियम के किसी एक अयस्क का नाम तथा सूत्र बताइए -

उत्तर- ऐलुमिनियम का अयस्क - बॉक्साइड $\left(\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$
(18). उन धातुओं के नाम बताइए जिनसे सिक्के बनाए जाते है ?

उत्तर- कॉपर (Cu)
चांदी (Ag)
सोना (Au)
(19). खनिज किसे कहते है ?

उत्तर- पृथ्वी की भूपर्पटी में प्राकृतिक रूप से पाए जाने वाले तत्वों या यौगिकों को खनिज कहते है।
(20). अयस्क क्या है ?

उत्तर- कुछ स्थानों पर खनिजों में कोई विशेष धातु काफी मात्रा में होती है, जिसे निकालना लाभकारी होता है। इन खनिजों को अयस्क कहते है।

लघुरात्मक प्रश्न (RBSE 2022)
(1). लौह धातु पर भाप की क्रिया का नामांकित चित्र बनाइए।

उत्तर-

(2). उभयधर्मी ऑक्साइड किसे कहते है ? ऐसे किसी ऑक्साइड का नाम लिखिए
उत्तर- ऐसे धातु ऑक्साइड जो अम्ल तथा क्षारक दोनों से अभिक्रिया करके लवण तथा जल प्रदान करते है, उभयधर्मी ऑक्साइड कहलाते है।
उदा.- ऐलुमिनियम ऑक्साइड $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$
जिंक ऑक्साइड (ZnO)
(3). पोटेशियम व सोडियम को किरोसिन तेल में डुबोकर क्यों रखा जाता है ?
उत्तर- पोटेशियम तथा सोडियम जैसी कुछ धातुएँ इतनी तेजी से अभिक्रिया करती है। कि खुले में रखने पर आग पकड़ लेती है। इसलिए, इन्हे सुरक्षित रखने तथा आकस्मिक आग को रोकने के लिए किरोसिन तेल में डुबो कर रखा जाता है।
(4). एनोडीकरण को समझाइए। इसके क्या उपयोग है ?

उत्तर- एनोडीकरण - ऐलुमिनियम पर मोटी ऑक्साइड की परत बनाने की प्रक्रिया को एनोडीकरण कहते है। वायु के सम्पर्क में आने पर ऐलुमिनियम पर ऑक्साइड की एक पतली परत का निर्माण होता है। ऐलुमिनियम ऑक्साइड की यह परत इसे संक्षारण से बचाती है। इस परत को मोटा करके इसे संक्षारण से अधिक सुरक्षित कर सकते है। एनोडीकरण के लिए ऐलुमिनियम की एक साफ वस्तु को ऐनोड बनाकर तनु सल्फ्यूरिक अम्ल $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ के साथ इसका विधुत - अपघटन किया जाता है। एनोड पर उत्त्सर्जित ऑक्सीजन गैस ऐलुमिनियम के साथ अभिक्रिया करके ऑक्साइड की एक मोटी परत बना देती है इस ऑक्साइड की परत को रंगकर ऐलुमिनियम की आकर्षक वस्तुएँ बनाई जा सकती है।
(5). कैल्सियम तथा मैग्नीशियम की जल से अभिक्रिया कराने पर तैरना प्रारंभ क्यों करता है ?
उत्तर- जल के साथ कैल्सियम तथा मैग्नीशियम की अभिक्रिया थोड़ी धीमी होती है।
$\mathrm{Ca}_{(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2_{(a q)}}+\mathrm{H}_{2}(g)+$ ऊष्मीय ऊर्जा यहां उत्त्सर्जित ऊष्मा हाइड्रोजन के प्रज्जवालित होने के लिए पर्याप्त नहीं होती है , इसलिए अभिक्रिया में उत्त्पन्न हाइड्रोजन गैस के बुलबुले कैल्शियम धातु की सतह पर चिपक जाते है। जिससे कैल्शियम तैरना प्रारम्भ कर देता है। इसी प्रकार मैग्नीशियम धातु की सतह पर भी हाइड्रोजन गैस के बुलबुले चिपक जाते है। जिससे यह तैरने लगता है।
(6). ऐक्वारेजिया क्या है ?

उत्तर- ऐक्वा रेजिया (रॉयल जल का लैटिन शब्द), $3: 1$ के अनुपात में सांद्र हाइड्रोक्लोरिक अम्ल (HCl) एवं सांद्र नाइट्रिक अम्ल $\left(\mathrm{HNO}_{3}\right)$ का ताजा मिश्रण होता है। ऐक्वा रेजिया प्रबल संक्षारक है। जो गोल्ड व प्लेटिनम जैसी धातुओं को गलाने में समर्थ होता है।
(7). सक्रियता श्रेणी को समझाइए ।

उत्तर- सक्रियता श्रेणी वह सूची है। जिसमें धातुओं की क्रिया - शीलता को अवरोही क्रम में व्यवस्थित किया जाता है।

K	पोटैशियम	सबसे अधिक अभिक्रियाशील
Na	सोडियम	
Ca	केल्सियम	
Mg	मैग्नीशियम	
A1	एल्यूसिमियम	
Zn	जिंक	घटती अभिंक्रियार्शीलता
Fe	आयरन	
Pb	लेड	
[H]	[हाइड्रोजन]	
Cu	कॉपर (ताँबा)	
Hg	मर्करी (पारद)	
Ag	सिल्वर	
Au	गोल्ड	सबसे कम अभिक्रियाशील

(8). सोडियम क्लोराइड का बनना समझाइए।

उत्तर- सोडियम परमाणु के बाह्यतम कोश में केवल एक e^{-}होता है। जिसे त्यागकर वह एक धनायन का निर्माण करता है। इसी तरह क्लोरीन परमाणु के बाह्यतम कोश में सात इलेक्ट्रॉन होते है। क्लोरीन परमाणु एक e - ग्रहण करके ॠणायन का निर्माण करता है। विपरीत आवेश होने के कारण सोडियम तथा क्लोराइड आयन परस्पर आकर्षित होते है। तथा मजबूत स्थिर वैधुत बल में बंधकर सोडियम क्लोराइड (NaCl) के रूप में उपस्थित रहते है। ध्यान रखने योग्य है। कि सोडियम क्लोराइड अणु के रूप में नहीं पाया जाता है। बल्कि यह विपरीत आयनों का समुच्चय होता है।

(9). आयनिक यौगिकों के गलनांक व क्वथनांक उच्च क्यों होते है

उत्तर- आयनिक यौगिकों का गलनांक व क्वथनांक बहुत अधिक होता है। क्योकि मजबूत अंतर - आयनिक आकर्षण को तोड़ने के लिए ऊर्जा की पर्याप्त मात्रा की आवश्यकता होती है।
(10). विधुत अपघटनी परिष्करण को समझाइए ।

उत्तर- कॉपर, जिंक, टिन, निकैल, सिल्वर , गोल्ड आदि जैसी अनेक धातुओं का परिष्करण विद्युत अपघटन द्वारा किया जाता है। इस प्रक्रम में अशुद्ध धातु को ऐनोड तथा शुद्ध धातु की पतली परत को कैथोड बनाया जाता है। धातु के लवण विलयन का उपयोग विद्युत अपघट्य के रूप में होता है। विद्युत अपघट्य से जब धारा प्रवाहित की जाती है। तब ऐनोड पर स्थित अशुद्ध धातु विद्युत अपघट्य में घुल जाती है। इतनी ही मात्रा में शुद्ध धातु विद्युत अपघट्य से कैथोड पर निक्षेपित हो जाती है। विलेय अशुद्धियाँ विलयन में चली जाती है। तथा अविलेय अशुद्धियाँ एनोड तली पर निक्षेपित हो जाती है। जिसे ऐनोड पंक कहते है।

(11). लोहे को जंग से किस तरह बचाया जा सकता है तथा यशदले पन क्या है ?
उत्तर- पेंट करके, तेल लगाकर , ग्रीस लगाकर , क्रोमियम लेपन , यशदलेपन, एनोडीकरण या मिश्रधातु बनाकर लोहे को जंग लगने से बचाया जा सकता है।
यशदलेपन - लोहे व इस्पात को जंग से सुरक्षित रखने के लिए लोहे व इस्पात पर जस्ते (जिंक) की पतली परत चढ़ाने की विधि को यशदलेपन कहते है।
(12). इन अभिक्रियाओं के लिए समीकरण लिखिए।

उत्तर- (i) भाप के साथ आयरन
(15). अयस्क से धातु निष्कर्षण में प्रयुक्त चरणो का चार्ट बनाइए। उत्तर-

मिश्रधातु

(1) पीतल - ताम्बा + जस्ता

$$
(\mathrm{Cu}) \quad(\mathrm{Zn})
$$

(2) काँसा- ताम्बा + टिन
$(\mathrm{Cu})(\mathrm{Sn})$
(3) सोल्डर $=$ सीसा + टिन
(Pb) (Sn)
(ii) जल के साथ कैल्शियम तथा पोटेशियम

(13). सोने के आभूषण बनाने में शुद्ध सोने का प्रयोग क्यों नहीं किया जाता ?
उत्तर- शुद्ध सोना 24 कैरट का होता है। यह काफी नर्म होता है, इसलिए आभूषण बनाने के लिए यह उपयुक्त नहीं होता। इसे कठोर बनाने के लिए इसमें चांदी या ताम्बा मिलाते है। भारत में अधिकांशत: आभूषण बनाने के लिए 22 कैरट सोने का उपयोग किया जाता है। तथा 2 भाग चांदी या ताम्बा मिलाते है।
(14). (a) खुली वायु में कुछ दिन रखने पर सिल्वर (चांदी) की वस्तुएँ काली हो जाती है क्यों ?
(b) आर्द्र वायु में कॉपर की भूरे रंग की चमक धीरे - धीरे

खत्म हो जाती है ?

उत्तर- (a) सिल्वर को खुली वायु में छोड़ने पर वायु में उपस्थित सल्फर, सिल्वर के साथ क्रिया करता है, जिससे सिल्वर पर सल्फाइड की परत बन जाती है। तथा सिल्वर (चांदी) की वस्तुएँ काली हो जाती है।
(b) कॉपर वायु में उपस्थित आर्द्र CO_{2} (कार्बन डाइ ऑक्साइड) के साथ अभिक्रिया करता है, जिससे हरे रंग के क्षारीय कॉपर कर्बोनेट की परत इसकी सतह पर चढ़ने लगती है, जिससे कॉपर की भूरे रंग की चमक धीरे - धीरे खत्म हो जाती है।

अंक भार - 7

प्रश्न - 5 = वस्तुनिष्ठ-1, अति. लघु- 2 , लघु -2
(1). $2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \quad \mathrm{~A}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ उपरोक्त अभिक्रिया में यौगिक \mathbf{A} है -
(1) $\mathrm{CH}_{3} \mathrm{COO}$
(2) $2 \mathrm{CH}_{3} \mathrm{COONa}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(4) CaCO_{3}
(2). $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \rightleftharpoons[\mathrm{A}]+\mathrm{H}_{2} \mathrm{O}$

उपरोक्त अभिक्रिया में यौगिक [A] है - (RBSE 2023)
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{COOCH}_{3}$
(3) $\mathrm{H}-\underset{\substack{\mathrm{C}}}{\mathrm{C}}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(4) $\mathrm{CH}_{3}-\underset{\substack{\| \\ 0}}{\mathrm{C}}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(3). यदि एल्कीन श्रेणी में $\mathrm{n}=3$ हो तो एल्कीन का साधारण नाम होगा -
(RBSE 2011)
(1) एथिलीन
(2) प्रोपिलीन
(3) ब्युटीलीन
(4) एसीटीलीन
(2)
(4). वायुमंडल में कार्बन की उपस्थिति है -
(1) 0.02%
(2) 0.03%
(3) 0.04%
(4) 0.06%
(2)
(5). कार्बन में संयोजकता e^{-}की संख्या है-
(1) 6
(2) 5
(3) 4
(4) 10
(3)
(6). ग्रेफाइट की संरचना में कार्बन के प्रत्येक परमाणु का आबंधन कार्बन के कितने अन्य परमाणुओं के साथ होता है -
(1) 2
(2) 5
(3) 4
(4) 3
(4)
(7). अब तक का ज्ञात सर्वाधिक कठोर पदार्थ है-
(1) फुलरीन
(2) हीरा
(3) प्लेटिनम
(4) सोना
(2)
(8). कार्बन यौगिकों में कार्बन किस तरह से व्यवस्थित रहते है -
(1) कार्बन की लम्बी सीधी श्रृंखला
(2) कार्बन की विभिन्न शाखाओं वाली श्रृंखला
(3) वलय में व्यवस्थित कार्बन श्रृंखला
(4) उपरोक्त सभी
(9). खाना बनाते समय यदि बर्तन की तली बाहर से काली हो रही है तो इसका मतलब है कि -
(1) भोजन अभी पूरी तरह नहीं पका है।
(2) ईंधन पूरी तरह से नहीं जल रहा है।
(3) ईंधन आर्द्र है।
(4) ईंधन पूरी तरह से जल रहा है।
(2)
(10). साबुन बनाने की प्रक्रिया में सह उत्पाद है -
(1) एल्कोहॉल
(2) वसा अम्ल
(3) NaOH
(4) ग्लिसरॉल
(4)
(11). ब्यूटेन का उच्च समजात है-
(1) प्रोपीन
(2) पेन्टीन
(3) पेन्टेन
(4) पेन्टाइन
(12). अपमार्जक सामान्यत : होते है -
(1) RCOONa
(2) RCOOK
(3) $\mathrm{RSO}_{4} \mathrm{Na}$
(4) RCOOR
(3)
(13). सुमेलित कीजिए -

यौगिक

A. एल्कोहॉल
B. एल्डिहाइड
C. कीटोन
D. कार्बोक्सिलिक अम्ल
(1) $\mathrm{A}-\mathrm{i}, \mathrm{B}-\mathrm{ii}, \mathrm{C}-\mathrm{iii}, \mathrm{D}-\mathrm{iv}$
(2) A-iii, B - iv, C - ii, D - i
(3) A - ii, B - iii, C - iv, D - i
(4) A - iv, B - iii, C - ii, D - i
(14). वे पदार्थ , जो अभिक्रिया की दर में परिवर्तन कर देते है, लेकिन स्वयं अपरिवर्तित रहते है , कहलाते है-
(1) परिरक्षक
(2) अपमार्जक
(3) अभिकारक
(4) उत्प्रेरक
(15). कठोर जल में प्रभावी होता है-
(1) साबुन
(2) अपमार्जक
(3) दोनों
(4) कोई नहीं
(16). ऐल्काइनो का सामान्य सूत्र है ?
(1) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
(2) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
(3) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
(4) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}}$
(17). अचार में परिरक्षक के रूप में प्रयुक्त होता है-
(1) एसीटिक अम्ल
(2) मेथेनॉल
(3) एथेनॉल
(4) मेथेनैल

अतिलघुरात्मक प्रश्न

(1). हीरा विद्युत का चालन नहीं करता , क्यों ?

उत्तर- हीरे में कार्बन का प्रत्येक परमाणु कार्बन के चार अन्य परमाणुओं के साथ आंबधित होता है। जिससे एक दृढ़ त्रिआयामी संरचना बनती है। इसी कारण कार्बन परमाणु के पास कोई मुक्त e^{-}नहीं होता है। अत: विद्युत का चालन करने में हीरा सहायक नहीं है।
(2). कार्बन का परमाणु क्रमांक कितना होता है-

उत्तर- परमाणु क्रमांक 6 होता है।
(3). मेथेन की e^{-}बिंदु संरचना को चित्रित कीजिए उत्तर-
(RBSE 2023,2014)
(4). निम्नलिखित अभिकर्मकों के साथ एथेनॉल की रासायनिक अभिक्रियाओं के संतुलित समीकरण लिखिए।
(i) Na
(ii) 443 k तापमान पर सांद्र $\mathrm{H}_{2} \mathrm{SO}_{4}$

उत्तर-
(i) $2 \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}+2 \mathrm{Na} \rightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-} \mathrm{Na}^{+}+\mathrm{H}_{2}$
(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\text { गर्म. }} \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$
(5). कार्बन के पूर्ण दहन पर प्राप्त गैस का रासायनिक सूत्र लिखिए।

उत्तर- कार्बन के पूर्ण दहन पर CO_{2} (कार्बन डाई ऑक्साइड) प्राप्त होती है।
(RBSE 2021)
(6). कार्बन के दो क्रिस्टलीय अपररूपों के नाम लिखिए।

उत्तर- क्रिस्टलीय अपरूूप - हीरा, ग्रेफाइट (RBSE 2020)
(7). निम्नलिखित यौगिकों के IUPAC नाम लिखिए।
(i) $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{a}}}{\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{3}}$
(ii) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}_{3}$

उत्तर- (i) 2- ब्रोमो, 3- क्लोरो ब्यूटेन
(ii) प्रोपाइन
(8). मार्श गैस का संरचना सूत्र लिखिए।
(RBSE 2019)
उत्तर- मार्श गैस, मेथेन को ही कहते है। जिसका रासायनिक सूत्र CH_{4} होता है। यह एल्केन श्रेणी का प्रथम सदस्य है, तथा सबसे साधारण हाइड्रोकार्बन है।

(9).

लिखिए।
का IUPAC नाम
(RBSE 2019)
उत्तर- 4- क्लोरो पेन्ट - 1 - ईन
(10). एल्काइन श्रेणी का सामान्य सूत्र लिखिए।

उत्तर- एल्काइन श्रेणी का सामान्य सूत्र $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$ होता है।
उदा. $-\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{3} \mathrm{H}_{4}$
(11). कार्बन परमाणु की दो विशेषताएँ लिखिए।

उत्तर- कार्बन परमाणु की निम्न विशेषताएँ प्रमुख है। जिनके कारण कार्बन यौगिक बहुत अधिक मात्रा में होते है।
शृंखलन(Catenation) - कार्बन में कार्बन के ही अन्य परमाणुओं के साथ बंध बनाने की क्षमता होती है। इस गुण को शृंखलन कहते है।
चतु: संयोजकता - कार्बन की संयोजकता चार होती है। अत: इसमें कार्बन के चार अन्य परमाणुओं अथवा कुछ अन्य एक संयोजक तत्वों के परमाणुओं के साथ आबंधन की क्षमता होती है।
(12). शुद्ध एसीटिक अम्ल को ग्लैशल एसीटिक अम्ल क्यों कहते है।

उत्तर- शुद्ध एसीटिक अम्ल (IUPAC नाम - एथेनॉइक अम्ल) का

गलनांक 290 k होता है। इसलिए यह ठण्डी जलवायु में शीत के दिनों में जम जाता है। अतः इसे ग्लैशल एसीटिक अम्ल कहते है।
(RBSE 2011)
(13). बेन्जीन का अणुसूत्र लिखिए।

उत्तर- बेन्जीन का अणुसूत्र $\mathrm{C}_{6} \mathrm{H}_{6}$ होता है।

(14). एथीन की e^{-}बिंदु संरचना बनाइए।
(RBSE 2015)
उत्तर- एथीन का अणुसूत्र $\mathrm{C}_{2} \mathrm{H}_{4}$ होता है।

(15). एथेन के दो उत्तरोत्तर सदस्यों के सूत्र लिखिए।

उत्तर- एथेन के उत्तरोत्तर सदस्य प्रोपेन व ब्यूटेन है।

$$
\begin{array}{ll}
\text { प्रोपेन - } \mathrm{C}_{3} \mathrm{H}_{8} & \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \\
\text { ब्यूटेन - } \mathrm{C}_{4} \mathrm{H}_{10} & \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}
\end{array}
$$

(16). एथेन की बिंदु संरचना बनाइए।

उत्तर- एथेन का अणुसूत्र $\mathrm{C}_{2} \mathrm{H}_{6}$ होता है।

(17). सहसंयोजी बंध किसे कहते है ?

उत्तर- दो परमाणुओं के बीच e^{-}युग्म की साझेदारी से बने बंध को सहसंयोजी आबंध कहते है। यह एक प्रबल आबंध है।
(18). एथेनॉल के निर्जलीकरण का समीकरण लिखिए, तथा निर्जलीकरण का नाम लिखिए।
उत्तर- निर्जलीकरण का समीकरण -

निर्जलीकरण - सल्फ्यूरिक अम्ल $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
(19). निम्न यौगिकों की सही श्रेणी पहचानिए।

यौगिक
(i) एथेन
(ii) बेन्जीन
(a) असंतृष हाइड्रोकार्बन
$\begin{array}{ll}\text { (iii) हेक्सेन } & \text { (c) विषम परमाणु युक्त हाइड्रोकार्बन }\end{array}$
(iv) मेथिल एल्कोहल (d) संतृप्त हाइड्रोकार्बन

उत्तर-(i) - (d), (ii) -(a), (iii) - (b), (iv) - (c)
(20). साबुन क्या होते है ?

उत्तर- साबुन लम्बी शृंखला वाले कार्बोक्सिलिक अम्लों के सोडियम (RCOONa) या पोटेशियम ($\mathrm{RCOOK)}$) लवण होते है।
(21). मेथेन के दहन का संतुलित समीकरण लिखिए ।

उत्तर- $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+$ ऊष्मा एवं प्रकाश मेथेन के दहन से CO_{2} (कार्बन डाई ऑक्साइड) व जल तथा ऊष्मा प्राप्त होते है।
(22). एसीटिक अम्ल का संरचना सूत्र लिखिए।

उत्तर-
$\mathrm{H}_{3} \mathrm{C}-\underset{\text { II }}{\mathrm{C}}-\mathrm{O}-\mathrm{H}$ एथेनॉइक अम्ल (एसीटिक अम्ल)
(23). विषम परमाणु को उदाहरण देकर समझाइये।

उत्तर- हाइड्रोकार्बन शृंखला में वह तत्त्व जो एक या अधिक हाइड्रोजन परमाणुओं को प्रतिस्थापित करते है। उन्हें विषम परमाणु कहते है। जैसे - ऑक्सीजन , नाइट्रोजन , सल्फर , क्लोरीन आदि।
(24). $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{4}, \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{C}_{2} \mathrm{H}_{4}$ में से असंतृष्त हाइड्रोकार्बन छाँटिए।
उत्तर- असंतृप्त हाइड्रोकार्बन
-एल्कीन (सूत्र - $\mathrm{CnH}_{2 \mathrm{n}}$)
-एल्काइन (सूत्र $-\mathrm{CnH}_{2 \mathrm{n}-2}$)
अतः $\mathrm{C}_{3} \mathrm{H}_{4}$ (एल्काइन) तथा $\mathrm{C}_{2} \mathrm{H}_{4}$ (एल्कीन) असंतृत्त हाइड्रोकार्बन है।
(25). एल्कोहल का विकृतिकरण क्या है ?
(RBSE 2013)
उत्तर- औद्योगिक उपयोग के लिए तैयार एथेनॉल का दुरूपयोग रोकने के लिए इसमें मेथेनॉल जैसा जहरीला पदार्थ मिला दिया जाता है। जिससे यह पीने योग्य न रह जाए। ऐसे एल्कोहल की पहचान के लिए इसमें रंजक मिलाकर इसका रंग नीला बना देते है। ऐसे एल्कोहल को विकृत एल्कोहल कहते है।
(26). असंतृस हाइड्रोकार्बन का हाइड्रोजनीकरण कैसे होता है ? अथवा संकलन अभिक्रिया क्या है ।
उत्तर- पैलेडियम (Pd) तथा निकैल (Ni) जैसे उत्प्रेरकों की उपस्थिति में असंतृस हाइड्रोकार्बन , हाइड्रोजन जोड़कर संतृप्त हाइड्रोकार्बन देते है। इसे असंतृप्त हाइड्रोकार्बन का हाइड्रोजनीकरण कहते है।

(27). एल्केन , एल्कीन तथा एल्काइन के सामान्य सूत्र लिखिए।

उत्तर- एल्केन का सामान्य सूत्र - $\mathrm{CnH}_{2 n+2}$
एल्कीन का सामान्य सूत्र - $\mathrm{CnH}_{2 n}$
एल्काइन का सामान्य सूत्र - $\mathrm{CnH}_{2 n-2}$
यहां $\mathrm{n}=1,2,3,4$,
(28). अमोनिया का अणुसूत्र व संरचना सूत्र क्या है ?

उत्तर- अणुसूत्र NH_{3}
संरचना सूत्र -

(29). CNG का पूरा नाम क्या है ?

उत्तर- संपीडित प्राकृतिक गैस
(30). कार्बन का एक अपररूप फुलरीन है, इसे यह नाम कैसे मिला ?

उत्तर- कार्बन अपररूपों में पहले $\mathrm{C}-60$ की पहचान की गई जिसमे कार्बन के परमाणु फुटबॉल के रूप में व्यवस्थित होते है। चूंकि यह अमेरिकी आर्किटेक्ट बंकमिस्टर फुलर द्वारा डिजाइन किए गए जियोडेसिक गुबंद के समान लगते है , इसलिए इस अणु को फुलरीन नाम दिया गया।
(31). संतृस हाइड्रोकार्बन किसे कहते है ?

उत्तर- कार्बन परमाणुओं के बीच केवल एक आबंध से जुड़े कार्बन के यौगिक संतृत्त यौगिक कहलाते है।
उदा.-एल्केन (एथेन , प्रोपेन)
(32). असंतृप्त यौगिक किसे कहते है ?

उत्तर- द्विआबंध अथवा त्रिआबंध युक्त कार्बन के यौगिक असंतृप यौगिक कहलाते है।
उदा.-एल्कीन (एथीन , प्रोपीन)
एल्काइन (प्रोपाइन , ब्यूटाइन)
(33). संरचनात्मक समावयन किसे कहते है ?

उत्तर- ऐसे यौगिक जिनके आण्विक सूत्र समान हो तथा संरचनाए भिन्न प्रकार को हो उन यौगिकों को संरचनात्मक समावयन कहते है।
उदा. - n - ब्यूटेन $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
आइसो - ब्यूटेन $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}-\mathrm{CH}_{3}$
दोनों का अणुसूत्र - $\mathrm{C}_{4} \mathrm{H}_{10}$ है।
(34). ऑक्सीकारक को परिभाषित कीजिए।

उत्तर- कुछ पदार्थो में अन्य पदार्थो को ऑक्सीजन देने की क्षमता होती है। इन पदार्थो को ऑक्सीकारक कहा जाता है।
उदा. - क्षारीय पोटेशियम परमैंगनेट $\left(\mathrm{KMnO}_{4}\right)$
अम्लीकृत पोटेशियम डाइक्रोमेट $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$
(35). फ्रेडरिक वोहलर ने यूरिया का निर्माण किस पदार्थ से किया।

उत्तर- 1828 में फ्रेडरिक वोहलर ने अमोनियम सामनेट से यूरिया का
निर्माण किया तथा प्रमाणित किया कि कार्बनिक यौगिकों को अकार्बनिक यौगिकों से भी प्रास्त कर सकते है। अन्यथा यह समझा जाता था। कि कार्बनिक यौगिकों केवल सजीवों में ही निर्मित हो सकते है।
(36). सल्फर के आठ परमाणुओं से बने सल्फर के अणु की e^{-}बिंदु संरचना क्या होगी। (संकेत- सल्फर के आठ परमाणु एक अंगूठी के रूप में आपस में जुड़े होते है।)
उत्तर- सल्फर का परमाणु क्रमांक -16
e^{-}विन्यास $(2,8,6)$
सल्फर के संयोजकता कोश में $6 \mathrm{e}^{-}$है। अत: यह $2 \mathrm{e}^{-}$का सांझा करेगा।

(37). यदि आप लिटमस पत्र (लाल एवं नीला) से साबुन की जाँच करे तो आपका प्रेक्षण क्या होगा ?

उत्तर- साबुन का विलयन क्षारीय होता है। क्योकि यह दुर्बल अम्ल एवं प्रबल क्षार का लवण है। अतः यह लाल लिटमस को नीला कर देगा, तथा नीले लिटमस पर कोई प्रभाव नहीं होगा।
(38). एक कार्बनिक यौगिक कालिख ज्वाला के साथ जलता है। यह संतृप्त यौगिक है, या असंतृप।
उत्तर- असंतृस्त यौगिक
(39). सहसंयोजक यौगिक विद्युत के दुर्बल चालक क्यों होते है ?

उत्तर- इन यौगिकों में आयन अथवा मुक्त इलेक्ट्रॉन नहीं होते जो विद्युत चालन के लिए आवश्यक है। इसलिए ये विद्युत के दुर्बल चालक होते है।
(40). कार्बन परमाणु की ज्यामिति कैसी होती है ?

उत्तर- कार्बन परमाणु की ज्यामिति चतुष्फलकीय होती है।
(41). IUPAC का पूरा नाम लिखिए।

उत्तर- International Union Of Pure And Applied Chemistry (अंतर्राष्ट्रीय विशुद्ध एवं अनुप्रयुक्त रसायन संघ)
(42). घरों में उपयोग में लाई जाने वाली गैस / के रोसिन के स्टोव में छिद्र क्यों होते है ?
उत्तर- घरों में प्रयुक्त गैस / केरोसिन के स्टोव में वायु के लिए छिद्र होते है। जिनसे पर्यास्त मात्रा में ऑक्सीजन - समृद्ध मिश्रण जलकर स्वच्छ नीली ज्वाला दे संके।
(43). किसकी उपस्थिति में कठोर जल में साबुन प्रभावी नहीं होता है ?
उत्तर- कठोर जल में उपस्थिति कैल्शियम एवं मैग्नीशियम लवणों के कारण ,साबुन झाग नहीं बना सकती।

लघुतरात्मक प्रश्न

(1). चार प्रकार्यात्मक समूहों के नाम बताइए।

उत्तर- प्रकार्यात्मक समूह (Functional Group) - वह विषम परमाणु अथवा परमाणुओं का समूह, जो कार्बन यौगिकों को विशिष्ट गुण प्रदान करता है। तथा क्रियाओ को सुनिश्चित करता है, प्रकार्यात्मक समूह कहलाता है।
प्रकार्यात्मक समूह

सूत्र

(i) हैलो एल्केन
(क्लोरो , ब्रोमो)
$-\mathrm{Cl},-\mathrm{Br}$
(हाइड्रोजन परमाणु के प्रतिस्थापी)
(ii) एल्कोहॉल

- OH
(iii) एल्डिहाइड
$-\mathrm{C} \leq \mathrm{H}$
(iv) कीटोन $-\mathrm{C}-$
II
O
(v) कार्बोक्सिलिक अम्ल - $\underset{\text { II }}{\mathrm{C}}-\mathrm{OH}$

O
(2). मेथेनॉल की थोड़ी सी मात्रा का सेवन भी घातक हो सकता है टिप्पणी लिखिए।

अथवा

एल्कोहल के अधिक सेवन से दो हानियाँ लिखिए
उत्तर- अधिक मात्रा में एल्कोहल के सेवन से उपापचयो प्रक्रिया धीमी हो जाती है। तथा केंद्रीय तंत्रिका तंत्र कमजोर हो जाता है। इसके फलस्वरूप समन्वय की कमी मानसिक दुविधा , उनींदापन , सामान्य अंत्त्तबाध का कम होना, भाव - शून्यता आदि है। साथ

ही सोचने , समझने की क्षमता तथा मांसपेशी बुरी तरह प्रभावित होती है।

इसके साथ ही मेथेनॉल की थोड़ी सी मात्रा लेने से मृत्यु हो जाती है। क्योकि यकृत में मेथेनॉल आक्सीकृत होकर मेथेनैल बन जाता है। मेथेनैल यकृत की कोशिकाओं के घटकों के साथ अभिक्रिया कर प्रोटोप्लाज्म स्कंदित कर देता है। मेथेनैल चाक्षुप तंत्रिका को भी प्रभावित करता है। जिससे व्यक्ति अँधा हो जाता है।
(3). साबुन की क्रियाविधि बताइए तथा मिसेल संरचना को चित्रित कीजिए।
(RBSE 2023)
उत्तर- साबुन के अणु में दोनों सिरों के विशेष गुणधर्म होते है। जल में विलेय एक सिरे को जलरागि (हाइड्रोफिलिक) कहते है। हाइड्रोकार्बन में विलयशील सिरे को जलविरागि (हाइड्रोफोबिक) कहते है। जब साबुन जल की सतह पर होता है। तब इसके अणु अपने को इस प्रकार व्यवस्थित कर लेते है कि इसका आयनिक सिरा जल के अंदर होता है जबकि हाइड्रोकार्बन पूंछ (दूसरा सिरा) जल के बाहर होती है।

जल के अंदर इन अणुओ की विशेष व्यवस्था होती है, जिससे इसका हाइड्रोकार्बन सिरा जल के बाहर होता है। ऐसा अणुओ का बड़ा समूह / कलस्टर / गुच्छा बनने से होता है, जिसमें जलविरागी पूंछ समूह के आंतरिक हिस्से में होती है , जबकि उसका आयनिक सिरा गुच्छे की सतह पर होता है। इस संरचना को ‘मिसेल’ कहते है। मिसेल के रूप में साबुन सफाई करने में सक्षम होता है क्योकि तैलीय मैल मिसेल के केंद्र में एकत्र हो जाते है। मिसेल विलयन में कोलॉइड के रूप में बने रहते है। तथा आयन-आयन विकर्षण के कारण वे अवक्षेपित नहों होते। इस प्रकार मिसेल में तैरते मैल आसानी से हटाए जा सकते है।

(4). निम्नलिखित योगिकों के IUPAC नाम लिखिए ।
(a) $\mathrm{CH}_{3}^{3}-\underset{\substack{1 \\ \mathrm{CH}_{3}}}{\mathrm{C}^{2}}={ }^{1} \mathrm{CH}_{2}$
(b) $\mathrm{CH}_{3}^{1}-\mathrm{CH}^{2}=\mathrm{CH}^{3}-\mathrm{CH}_{3}^{4}$
(c)
$\mathrm{CH}_{3}^{1}-\underset{\substack{1 \\ \mathrm{CH}^{2}}}{ }-\mathrm{CH}_{2}^{3}-\mathrm{CH}_{3}^{4}$
उत्तर- (a) 2 -मेथिन प्रोप-1-ईन
(b) ब्यूट - 2 - ईन / 2-ब्युटीन
(c) 2 - क्लोरो ब्यूटेन
(5). प्रतिस्थापन अभिक्रिया किसे कहते है ? (RBSE 2017)

उत्तर- संतृप्त हाइड्रोकार्बन अत्यधिक अनभिक्रमित होते है। तथा अधिकांश अभिकर्मकों की उपस्थिति में अक्रिय रहते है। परन्तु सूर्य के प्रकाश की उपस्थिति में क्लोरीन का हाइड्रोकार्बन में संकलन होता है। क्लोरीन एक - एक करके हाइड्रोजन के परमाणुओं का प्रतिस्थापन करती है। इसको प्रतिस्थापन अभिक्रिया कहते है। क्योकि एक प्रकार का परमाणु अथवा परमाणुओं का समूह दूसरे का स्थान लेते है।
$\mathrm{CH}_{4}+\mathrm{Cl}_{2} \xrightarrow{\text { सूर्य का प्रकाश }} \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$
$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{Cl}_{2} \longrightarrow \underset{\text { क्लोरोफॉर्म }}{\mathrm{CHCl}_{3}+\mathrm{HCl}}$
(6). साबुन तथा अपमार्जक में अंतर बताइए। (RBSE 2017)

उत्तर-

साबुन	अपमार्जक
1. साबुन लम्बी श्रृंखला वाले वसा अम्लों के सोडियम एवं पोटेशियम लवण होते है।	1. अपमार्जक लम्बी कार्बोक्सिलिक अम्ल श्रृंखला के अमोनियम एवं सल्फोनेट लवण होते है।
2. साबुन कठोर जल के साथ झाग नहीं बनाते है।	2. अपमार्जक कठोर जल के साथ भी झाग बनाते है।
3. साबुन को वनस्पति तेल या जंतु वसा से बनाया जाता है।	3. संश्लिष्ट अपमार्जक कोयले तथा पेट्रोलियम के हाइड्रोकार्बन से बनते है।
4. यह जल प्रदूषण नहों फैलाते है।	4.यह जल प्रदूषण फैलाते है।

(7). निम्नलिखित में से एथेन कौनसी है , इसमें उपस्थित सहसंयोजक बंधो की संख्या लिखिए।
(RBSE 2016)
(i) $\mathrm{C}_{2} \mathrm{H}_{2}$
(ii) $\mathrm{C}_{2} \mathrm{H}_{4}$
(iii) $\mathrm{C}_{2} \mathrm{H}_{6}$

उत्तर- एल्केन का सूत्र $=\mathrm{CnH}_{2 \mathrm{n}+2}$ होता है। इसके अनुसार (iii) $\mathrm{C}_{2} \mathrm{H}_{6}$ एथेन है। (एथ $=2$ कार्बन) $\begin{array}{ccc}\mathrm{H} & \mathrm{H} \\ \mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H} \\ \mathrm{H} & \mathrm{H} \\ \mathrm{H} & \mathrm{H}\end{array}$
एथेन में 7 सहसंयोजक बंध होते है।
$\mathrm{C}_{2} \mathrm{H}_{2}$ - एथाइन है जबकि $\mathrm{C}_{2} \mathrm{H}_{4}$ एथीन है।
(8). निम्न में से एथीन कौनसी है ? इसमें उपस्थित द्विबंध की संख्या लिखिए।
(i) $\mathrm{C}_{2} \mathrm{H}_{2}$
(ii) $\mathrm{C}_{2} \mathrm{H}_{4}$
(iii) $\mathrm{C}_{2} \mathrm{H}_{6}$

उत्तर- एथीन = एथ

$$
\frac{\text { ईन }}{\text { एल्कीन }\left(\mathrm{CnH}_{2 \mathrm{n}}\right)}
$$

अत: $\mathrm{C}_{2} \mathrm{H}_{4}$ एथीन है।
संरचना सूत्र-
इनके एक द्विबंध है। तथा 4 एकल बंध है।
यहां $\mathrm{C}_{2} \mathrm{H}_{2}$ - एथाइन है। (त्रिबंध-1, एकल बंध-2)
$\mathrm{C}_{2} \mathrm{H}_{6}$ एथेन है। (एकल बंध-7)
(9). समजातीय श्रेणी के तीन गुणधर्म लिखिए ।

उत्तर- समजातीय श्रेणी - कार्बनिक यौगिकों की ऐसी श्रृंखला जिसमे कार्बन श्रृंखला में स्थित हाइड्रोजन को एक ही प्रकार का प्रकार्यात्मक समूह प्रतिस्थापित करता है , समजातीय श्रेणी कहलाती है।

गुणधर्म

(i) जब किसी समजातीय श्रेणी में आण्विक द्रव्यमान बढ़ता है।

तो भौतिक गुणधर्म में क्रमबद्धता दिखाई देती है, क्योकि आण्विक द्रव्यमान बढ़ने से गलनांक व क्वथनांक में वृद्धि होती है।
(ii) किसी विशेष विलायक में विलेयता में भी क्रमबद्धता दिखती है।
(iii) प्रकार्यात्मक समूह के द्वारा सुनिश्चित किए जाने वाले रासायनिक गुण, समजातीय श्रेणी में एकसमान बने रहते है।
(10). एथेनॉल से एथेनॉइक अम्ल में परिवर्तन को आॉक्सीकरण अभिक्रिया क्यों कहते है।
उत्तर- एथेनॉल से एथेनॉइक अम्ल में परिवर्तन ऑक्सीकरण अभिक्रिया है। क्योकि इस परिवर्तन में ऑक्सीजन की वृद्धि हो रही है। तथा यह ऑक्सीकारक KMnO_{4} या $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ द्वारा सम्पन्न होती है। तथा एथेनॉल में से हाइड्रोजन निकलता है।

(11). एक कार्बनिक यौगिक A जिसका अणुसूत्र $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ है ऑक्सीकरण करने पर अम्ल B देता है, जिसमे कार्बन परमाणुओं की संख्या \mathbf{A} के समान है। यौगिक \mathbf{A} डॉक्टरों द्वारा त्वचा के निर्जीवाणुकरण में प्रयुक्त किया जाता है। तो यौगिक A तथा B का नाम क्या है। तथा A से B बनने की अभिक्रिया भी लिखिए।
उत्तर- $A\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right) \xrightarrow{\text { ऑवसीकरण }}$ अम्ल (B)
अत: B कार्बानिक अम्ल है। जिसमे दो कार्बन है। तथा B मेंCOOH समूह (अम्ल) भी होगा । अत: $\mathrm{B}, \mathrm{CH}_{3} \mathrm{COOH}$ होगा। एक कार्बोक्सिलिक अम्ल एल्कोहॉल के ऑक्सीकरण से प्राप्त हो जाता है। तथा एल्कोहॉल को त्वचा के निर्जीवाणुकरण में प्रयुक्त किया जाता है। अत: यौगिक A एक एल्कोहल है। तथा समीकरण निम्न प्रकार है।
$\begin{array}{cc}\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{O}_{2} \xrightarrow{\text { एल्कोहल }} \begin{array}{c}\text { ऑक्सीकरण } \\ \text { (एथेनॉल) }\end{array} & \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \\ \text { अम्ल } \\ \text { (एथेनॉइक अम्ल) }\end{array}$
(12). एस्टरीकरण किसे कहते है ?

उत्तर- एस्टर मुख्य रूप से अम्ल एवं एल्कोहल की अभिक्रिया से निर्मित होते है। एथेनॉइक अम्ल किसी अम्ल उत्प्रेरक की उपस्थित में परिशुद्ध एथेनॉल से अभिक्रिया करके एस्टर बनाते है। इसे एस्टरीकरण कहते है।

$$
\underset{\text { अम्ल }}{\mathrm{H}_{3} \mathrm{C}-\mathrm{COOH}}+\underset{\text { एल्कोहल }}{\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OH}} \longrightarrow
$$

(13). अंगीठी में जलने वाला कोयला लाल रंग के समान उज्वल होता है, तथा बिना ज्वाला के ऊष्मा देता है ऐसा क्यों होता है?
उत्तर- ऐसा इसलिए होता है क्योकि केवल गैसीय पदार्थी के जलने पर ही ज्वाला उतपन्न होती है। लकड़ी को जलाने पर उपस्थित वाष्पशील पदार्थ वाष्पीकृत हो जाते है। जिससे कोयले में ऐसे पदार्थो की कमी हो जाती है। और ये बिना ज्वाला के ऊष्मा देते है।
(14). भौतिक एवं रासायनिक गुणों के आधार पर एथेनॉल एवं एथेनॉइक अम्ल में आप कैसे अंतर करेंगे ?
उत्तर- (a) भौतिक गुणों के आधार पर -
(i) एथेनॉल में स्प्रिट के समान गंध है। जबकि एथेनॉइक अम्ल में तीक्ष्ण गंध आती है।
(ii) एथेनॉल का गलनांक व क्वथनांक क्रमश: 156 K व 351 K है। जबकि एथेनॉइक अम्ल का गलनांक व क्वथनांक क्रमश: 290 तथा 391 K है।
(b) रासायनिक गुणों के आधार पर
(i) एथेनॉल नीले लिटमस को प्रभावित नहीं करता, जबकि एथेनॉइक अम्ल नीले लिटमस को लाल कर देता है।
(ii) एथेनॉल, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ व NaHCO_{3} से अभिक्रिया नहीं करता, परन्तु एथेनॉइक अम्ल इनमे अभिक्रिया कर लवण CO_{2} व $\mathrm{H}_{2} \mathrm{O}$ बनाता है।
$2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow$
एथेनॉइक अम्ल
$2 \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
सोडियम एसीटेट
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaHCO}_{3} \longrightarrow$

$$
\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

अंक भार - 8

प्रश्न - 4 = वस्तुनिष्ठ-1, रिक्तस्थान प्रश्न -1 ,लघु -1 , निबं. -1 ,
(1). संकुचन के समय ह्दय के अन्दर रक्त के पश्च प्रवाह को रोकता है-
(1) वाल्व
(2) निलय की दीवार
(3) आलिंद की दीवार
(4) उपरोक्त सभी
(1)
(2). मनुष्य में वृक्क एक तंत्र का भाग है जो संबंधित है-
(1) पोषण
(2) श्वसन
(3) उत्सर्जन
(4) परिवहन
(3)
(3). हमारे शरीर में भोजन किस रूप में संचित रहता है।
(1) जल के रूप में
(2) ग्लाइकोजन के रूप में
(3) मंड के रूप में
(4) रक्त के रूप में
(2)
(4). स्वपोषी पोषण के लिए आवश्यक है।
(1) CO_{2} तथा जल
(2) क्लोरोफिल
(3) सूर्य का प्रकाश
(4) उपरोक्त सभी
(4)
(5). मानव में हृदय एक तंत्र का भाग है जो संबधित है -
(1) पोषण
(2) श्वसन
(3) उत्सर्जन
(4) परिवहन
(4)
(6). रूधिर का द्रव भाग क्या कहलाता है ?
(1) प्लाज्मा
(2) कोशिकाएं
(3) RBC
(4) WBC
(1)
(7). पाचन क्रिया पूर्ण होती है-
(1) अग्न्याशय में
(2) बड़ी आंतें में
(3) छोटी आंत में
(4) ग्रासनली में
(3)
(8). आमाश्य में स्रावित अम्ल का नाम है ?
(1) हाइड्रोक्लोरिक अम्ल
(2) साइट्रिक अम्ल
(3) अमीनो अम्ल
(4) लैक्टिक अम्ल
(1)
(9). निम्न में से जैव उत्प्रेरक है-
(1) अम्ल
(2) एंजाइम
(3) क्षार
(4) लवण
(2)
(10). मनुष्य की आहारनाल का सबसे लंबा भाग होता है ।
(1) वृहदांत्र
(2) क्षुद्रांत्र
(3) आमाशय
(4) ग्रसिका
(11). मछली का मुख्य श्वसन अंग है-
(1) त्वचा
(2) फेफड़ा
(3) क्लोम
(4) नाक
(12). किस वाहिका में वाल्व नहीं पाये जाते है ?
(1) शिरा
(2) धमनी
(3) शिरिकाएं
(4) कोई नहीं
(13). पादपों में भोजन का परिवहन किस उत्तक द्वारा होता है ?
(1) जाइलम
(2) रेशे
(3) फ्लोएम
(4) कोई नहीं
(14). वसा का पाचन करने वाला एन्जाइम है-
(1) टायलिन
(2) पेप्सिन
(3) लाइपेज
(4) एमाइलेज
(3)
(15). प्रकाश संश्लेषण क्रिया में ऑक्सीजन बाहर निकलता है-
(1) जल से
(2) CO_{2} से
(3) ग्लूकोज से
(4) प्रकाश से
(1)
(16). रूधिर को हृदय से शरीर में अंगों तक ले जाने वाली वाहिकाएँ कहलाती है ?
(1) शिरा
(2) धमनी
(3) लसिका वाहिनी
(4) उपरोक्त सभी
(2)
(17). पित्त रस स्रावित होता है।
(1) अग्नाशय से
(2) फेफड़ो से
(3) आमाशय से
(4) यकृत से
(4)
(18). रक्त का थक्का बनाने का कार्य करती है।
(1) प्लेटलेट्स / रक्त बिंबाणु
(2) लसीका
(3) RBC
(4) WBC
(19). भोजन का पूर्ण पाचन होता है-
(1) वृहदांत्र
(2) क्षुद्रांत्र
(3) आमाशय
(4) मुँह
(20). अमीबा भोजन किस अंग की सहायता से करता है ?
(1) कूटपाद / पादाभ
(2) पैर
(3) हाथ
(4) मुँह
(1)
(21). जठर ग्रंथियाँ कहाँ पायी जाती है।
(1) आँख में
(2) अग्नाशय में
(3) यकृत में
(4) अमाशय में
(4)
(22). वह प्रक्रम जिनके द्वारा शरीर में ऊर्जा का उत्पादन होता है, कहलाता है-
(1) पोषण
(2) श्वसन
(3) उत्त्सर्जन
(4) उत्तेजनशीलता
(23). इथेनॉल किस प्रकार के श्वसन में बनता है -
(1) दहन में
(2) वायवीय श्वसन में
(3) अवायवीय श्वसन में
(4) किसी में भी नहीं
(3)
(24). अवायवीय श्वसन में मुख्य उत्पाद बनता है ?
(1) हाइड्रोक्लोरिक अम्ल
(2) ग्लूकोज
(3) अमीनो अम्ल
(4) इथेनॉल
(25). स्वस्थ शरीर का सामान्य रक्त दाब (सिस्टोलिक / डायस्टोलिक) होता है-
(1) $80 / 120 \mathrm{mmHg}$
(2) $140 / 60 \mathrm{mmHg}$
(3) $120 / 80 \mathrm{mmHg}$
(4) $150 / 90 \mathrm{mmHg}$
(3)
(26). फुम्फुस के अन्दर स्थित वाहिका जो छोटी-छोटी नलिकाओं में विभाजित होकर अंतिम सिरे गुब्बारे जैसी रचना कहलाती है-
(1) श्वसनी
(2) श्वसनिकाएं
(3) वायु कूपिका
(4) नासा छिद्र
(3)

रिक्त स्थान की पूर्ति करो
(1). लार में एक एन्जाइम होता है जिसे लारीय. \qquad कहते है ।
उत्तर- एमिलेस
(2). मछली के हृदय में. \qquad कोष्ठ होते हैं।
उत्तर- दो
(3). मानव हृदय में........ कोष्ठ होते है।

उत्तर- चार
(4). मानव में मुख्य नाइट्रोजनी उत्सर्जी पदार्थ.......... है।

उत्तर- यूरिया
(5). क्षुद्रात्र द्वारा अवशोषित वसा का वहन \qquad द्वारा होता है।
उत्तर- लसिका
(6). क्षुदांत्र में प्रोटीन का पाचन \qquad एंजाइम करता है।
उत्तर- ट्रिप्सिन
(7). पत्तियों का हरा रंग \qquad वर्णक के कारण होता है ।
उत्तर- हरितलवक
(8). यकृत एवं \qquad दोनों अपने स्त्रावित रस क्षुद्रांत्र में भेजते है।
उत्तर- अग्नाशय
(9). ATP के विखण्डन से. \qquad ऊर्जा मोचित होती है।
उत्तर- $30.5 \mathrm{KJ} / \mathrm{mol}$
(10). मानव उत्सर्जन की सूक्ष्मतम इकाई. \qquad कहलाती है।
उत्तर- नेफ्रोन वृक्काणु
(11). पौधों में.........उत्तक जल परिवहन के लिए उत्तरदायी है।

उत्तर- जाइलम
(12). पेशियों में. \qquad के जमाव के कारण दर्द होता है।
उत्तर- लैक्टिक अम्ल
(13). रक्त दाब मापने वाले यंत्र का नाम. \qquad .है।
उत्तर- स्फाईग्मोमैनोमीटर
(14). ग्लूकोज से.........उत्पन्न करना श्वसन का मुख्य उद्देश्य है। उत्तर- ऊर्जा
(15). पत्तियों में गैसों का आदान-प्रदान. \qquad द्वारा होता है।
उत्तर- रन्ध्रों
(16). दीर्घरोम पाचन क्रिया में \qquad का सतही क्षेत्रफल बढ़ा देते हैं।
उत्तर- अवशोषण
(17). फेफड़ों में गैसों का विनिमय. \qquad .नामक स्थल पर होता है।
उत्तर- वायु कूपिका
(18). RBC का रंग. \qquad .वर्णक की उपस्थिति से लाल होता है ।
उत्तर- हीमोग्लोबिन
(19). ATP (एडिनोसिन ट्राई फॉस्फेट) ${ }^{-}$को कोशिका की \qquad कहते हैं।
उत्तर- ऊर्जा मुद्रा
(20). हृदय में. .उल्टी दिशा में रुधिर प्रवाह को रोकना सुनिश्चित करते हैं।
उत्तर- वाल्व
(21). आमाशय में पेप्सिन एंजाइम द्वारा. \qquad का आंशिक पाचन होता है।
उत्तर- प्रोटीन
(22). मानव........एक पेशीय अंग है, जो मुट्टी के आकार का होता है।
उत्तर- हृदय
(23). श्वसन में ग्लूकोज का पायरूवेट में विखण्डन प्रक्रम \qquad में सम्पन्र होता है।
उत्तर- कोशिका द्रव्य
(24). जाइलम में जल की गति के लिए.. मुख्य प्रेरक बल है ।

उत्तर- वाष्पोत्सर्जन
(25). क्षुद्रांत्र के आन्तरिक स्तर पर अंगुलीनुमा प्रवर्ध पाये जाते है, जिन्हें ..कहते है

उत्तर- दीर्घरोम

(26). लारीय एमाइलेज जटिल.........को सरल शर्करा में बदलने का कार्य करता है।
उत्तर- मंड स्टार्च
(27). पत्तियों में छिद्रों का \qquad .होने का कार्य द्वार कोशिकाओं द्वारा होता है।
उत्तर- खुलने एवं बंद
(28). ग्लुकोज का विखंडन होकर पायरूवेट बनता है और यह क्रियामें होती है।
उत्तर- कोशिका द्रव्य
(29). पादपों में कुछ अपशिष्ट उत्पाद रेजिन तथा गोंद के रूप में पुरानेममें संचित रहते हैं।
उत्तर- जाइलम
(30). उभयचर या बहुत से सरीसृप जंतुओं (अनियततापी जन्तुओं) में. \qquad कोष्ठीय हृदय होता है।
उत्तर- तीन
(31). सजीवों के वे सभी प्रक्रम जो सम्मिलित रूप से अनुरक्षण का कार्य करते ..कहलाते है।
उत्तर- जैव प्रक्रम
(32). पायरुवेट के विखंडन से यह CO_{2} जल तथा ऊर्जा देता है और यह क्रिया. \qquad में होती है।

उत्तर- माइटोकॉन्ड्रिया

(33). एंजाइम कार्बनिक. \qquad ..होते हैं जो विभित्र जैव रासायनिक क्रियाओं की दर को बढ़ाते हैं।
उत्तर- जैव उत्प्रेरक
(34). कृत्रिम वृक्क रुधिर से नाइट्रोजनी अपशिष्ट उत्पादों को हटाने की एक युक्ति है जिसे. \qquad .कहा जाता हैं।
उत्तर- अपोहन
(35). मनुष्यों में रक्त परिवहन के प्रत्येक एक चक्र में रक्त हृदय में दो बार आता है, इसे. \qquad .कहते हैं।
उत्तर- दोहरा परिसंचरण
(36). वसा के वृहत अणुओं की छोटी-छोटी गोलिकाओं में विखण्डन करना. \qquad .कहलाता है।
उत्तर- पायसीकरण (इमल्सीफिकेशन)
(37). घास खाने वाले शाकाहारी जन्तुओं को सेल्युलोज पचाने के लिए. \qquad .क्षुद्रांत्र की आवश्यकता होती है।
लंबी
(38). मांस का पाचन सरल होता है अत: बाघ जैसे मांसाहारी की क्षुद्रांत्र. \qquad .होती है।
छोटी
(39). पादपों में रात्रि के समय जल के वहन में. \qquad विशेष रूप से प्रभावी होता है।
उत्तर- मूल दाब
(40). जीव भोजन के जटिल पदार्थो को सरल पदार्थो में खंडित करने के लिए जैव-उत्प्रेरक का उपयोग करते हैं। जिन्हें कहते हैं।

उत्तर- एंजाइम
(41). हमारे शरीर में भोजन \qquad के रूप में संचित रहता है ।
उत्तर- ग्लाइकोजन

(42). पौधों द्वारा कार्बोहाइड्रेट तुरंत प्रयुक्त नहीं होते हैं उन्हें
 \qquad .के

रूप में संचित कर लिया जाता है।

उत्तर- मंड (स्टार्च)
(43). \qquad .एक आवश्यक तत्व है जिसका उपयोग प्रोटीन तथा अन्य यौगिकों के संश्लेषण में किया जाता है।
उत्तर- नाइट्रोजन
(44). रुधिर में एक तरल माध्यम. \qquad भोजन, CO_{2} तथा नाइट्रोजनी वर्ज्य पदार्थ का विलीन रूप में वहन करता है।
उत्तर- प्लैज्मा
(45). फफूँदी, यीस्ट तथा मशरूम आदि कवक भोज्य पदार्थो को कैसे ग्रहण करते है ?
उत्तर-भोज्य पदार्थो का विघटन शरीर के बाहर ही करके उसका अवशोषण करते हैं।
(46). आहार नली के प्रत्येक भाग में भोजन की नियमित प्रवाह होने के लिए. \qquad .गति आवश्यक है।
उत्तर- क्रमाकुंचक
(1). पोषण के आधार पर जीव कितने प्रकार के होते है ? समझाइये।

उत्तर- पोषण के आधार पर जीव दो प्रकार के होते हैं-
(i) स्वपोषी (ii) विषमपोषी ।

वे जीव जो अपना भोजन स्वयं बनाते हैं, वे स्वपोषी कहलाते हैं। जैसे- सभी हरे पौधें तथा कुछ जीवाणु।
वे जीव जो अपनी उतरजीविता के लिए प्रत्यक्ष या परोक्ष रूप से स्वपोषी जीवों पर आश्रित होते हैं। वे विषमपोषी कहलाते हैं। जैसे- जंतु तथा कवक।
(2). पौधों के शरीर में पोषण केसे होता है ? इस प्रक्रम की अभिक्रिया समीकरण लिखिए।
उत्तर- हरे पौधे (स्वपोषी जीव) प्रकाश संश्लेषण प्रक्रम द्वारा कार्बन तथा ऊर्जा की आवश्यकताएँ पूरी करते हैं । प्रकाश संश्लेषण प्रक्रम में स्वपोषी बाहर से लिए कार्बन डाइऑक्साइड तथा जल को सूर्य के प्रकाश तथा क्लोरोफिल की उपस्थिति में भोजन (कार्बोहाइड्रेट) के रूप में संश्लेषित करते हैं। कार्बोहाइड्रेट पौधे को ऊर्जा प्रदान करने में प्रयुक्त होते हैं। पौधों द्वारा कार्बोहाइड्रेट तुरंत प्रयुक्त नहीं होते हैं उन्हें मंड (स्टार्च) के रूप में संचित कर लिया जाता है। यह रक्षित आंतरिक ऊर्जा की तरह कार्य करेगा तथा पौधे द्वारा आवश्यकतानुसार प्रयुक्त कर लिया जाता है। प्रकाश संश्लेषण की अभिक्रिया समीकरण -

$$
6 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { कोोरोफिल वसूर्य का प्रकाश }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\quad 6 \mathrm{O}_{2}
$$

(3). प्रकाश संश्लेषण प्रक्रम में होने वाली मुख्य घटनाओं का संक्षिप्त वर्णन कीजिए ।
उत्तर- (i) क्लोरोफिल द्वारा प्रकाश ऊर्जा को अवशोषित करना ।
(ii) प्रकाश ऊर्जा को रासायनिक ऊर्जा में रूपांतरण करना।
(iii) $\mathrm{H}_{2} \mathrm{O}$ अणुओं का H_{2} तथा O_{2} में अपघटन ।
(iv) CO_{2} का काबोहज़इड्रेट में अपचयन।
(4). रंध्र क्या है ? पादपों में रन्ध्र खुलने व बन्द होने की क्रियाविधि समझाइये
उत्तर- रंध्र पत्ती की सतह पर सूक्ष्म छिद्र होते है प्रकाश संश्लेषण के लिए

गैसों का अधिकांश आदान-प्रदान इन्हीं रंध्रों के द्वारा होता है। इन रंधों से पर्यास मात्रा में जल की भी हानि होती है अतः जब प्रकाशसंश्लेषण के लिए कार्बन डाइऑक्साइड की आवश्यकता नहीं होती तब पौधा इन रंध्रों को बंद कर लेता है। रंध्रों का खुलना ओर बंद होना द्वार कोशिकाओं का एक कार्य है। द्वार कोशिकाओं में जब जल अंदर जाता है तो वे फूल जाती है। और रंध्र का छिद्र खुल जाता है। इसी तरह जब द्वार कोशिकाएँ सिकुड़ती है। तो छिद्र बंद हो जाता है।

(5). एककोशिक जीव में पोषण विधि को समझाइए अमीबा में पोषण विधि को सचित्र समझाइए ।
उत्तर-
एककोशिक जीव अमीबा अपनी कोशिकीय सतह से अंगुली जैसे अस्थायी प्रवर्ध (कूटपाद/पादाभ) की मदद से भोजन ग्रहण करता है । ये प्रवर्ध भोजन को घेरकर खाद्य रिक्तिका बनाते है। खाद्य रिक्तिका में जटिल पदार्थो का अपघटन सरल पदार्थो में किया जाता है । और वे कोशिका द्रव्य में विसरित हो जाते है तथा बचा हुआ अपशिष्ट पदार्थो कोशिका की सहत की ओर गति करता है तथा शरीर से बाहर निष्कासित कर दिया जाता है। पैरामीशियम भी एककोशिक जीव है, इसकी कोशिका का एक निश्चित आकार होता है। जो पक्ष्माभ द्वारा की पूरी सतह को ढकी होती हैं। इसमें भोजन एक विशिष्ट स्थान से ही ग्रहण किया जाता है। भोजन इस स्थान तक पक्ष्माभ की गति द्वारा पहुँचता है।

(6). पाचन तंत्र के विभिन्न अंगों व सहायक ग्रंथियां के नाम लिखिए ?

उत्तर- पाचन तंत्र के मुख्य अंग :- (1) मुंह (2) ग्रसनी व ग्रसिका (3) अमाशय (4) क्षुद्रांत्र (5) बृहद्रांत्र (6) गुदाद्वार, सहायक ग्रंथियां- (1) लाला ग्रंथियां (2) यकृत (3) अग्नाशय।
(7). भोजन के पाचन में लार किस प्रकार सहायता करता है ?

उत्तर- लार में एक एंजाइम होता है। जिसे लारीय एमिलेस कहते हैं, यह लारीय एमिलेस एंजाइम भोजन में उपस्थित जटिल अणु मंड (स्टार्च) को सरल शर्करा में खंडित कर देता है।
(8). मानव के अमाशय में पाचन क्रियाविधि को समझाइये। या आमाशय में अम्ल के दो कार्य लिखों ? क्या होगा यदि आमाश्य में श्लेष्मा का स्राव नहीं होगा समझाइए ।
उत्तर- मुँह से भोजन इसोफेगस द्वारा आमाशय तक ले जाया जाता है । आमाशय की भित्ति में उपस्थित जठर ग्रंथियाँ पाचक रस स्रावित करती है। जिसमें हाइड्रोक्लोरिक अम्ल $(H C I)$, पेप्सिन एंजाइम तथा श्लेष्मा होते है। हमारे आमाशय में अम्ल भोजन के साथ

आये हानिकारक जीवाणुओं को नष्ट करता है। तथा माध्यम को अम्लीय बनाता है। जो पेप्सिन एन्जाइम की क्रिया में सहायक होता है।

पेप्सिन एंजाइम प्रोटीन का आंशिक पाचन करता है। श्लेष्मा आमाशय के आंतरिक अस्तर की अम्ल से सुरक्षा करता है। आमाशय मे इस पचित भोजन को काइम कहा जाता है।
(9). क्षुद्रांत्र में पाचन क्रिया समझाइए।

उत्तर- क्षुद्रांत्र कार्बोहाइड्रेट, प्रोटीन तथा वसा के पूर्ण पाचन का स्थल है। इस कार्य के लिए क्षुद्रांत्र में आंत्रीय रस स्रावित होता है। एवं यकृत से पित्त रस तथा अग्नाशय ग्रंथि से अग्नाशयी रस प्राप्त होता है। पित रस भोजन का माध्यम क्षारीय बनाता है। एवं वसा का इमल्सीकरण करता है। इमल्सीकृत वसा का पाचन लाइपेज एन्जाइम करता है।

अग्नाशयी रस का ट्रिप्सिन एन्जाइम प्रोटीन का पूर्ण पाचन करता है। आंत्रीय रस में उपस्थित एंजाइम अंत में प्रोटीन को अमीनों अम्ल में, जटिल कार्बोहाइड्रेट को ग्लूकोज में एवं वसा को वसीय अम्ल व ग्लिसरॉल में परिवर्तित कर देते है।
(10). हमारे शरीर में वसा का पाचन समझाइए। यह प्रक्रम कहाँ होता है ?
उत्तर- हमारे शरीर में वसा का पाचन क्षुद्रांत्र में होता है। क्षुद्रांत्र में वसा बड़ी गोलिकाओं के रूप में आती है। जिससे उस पर एंजाइम का कार्य करना मुश्किल हो जाता है। यकृत द्वारा स्रावित पित्त लवण इस वसा को छोटी-छोटी गोलिकाओं में तोड़कर इमल्सीकृत कर देता है। जिससे एंजाइम की क्रियाशीलता बढ़ जाती है। अग्न्याशय द्वारा स्रावित अग्न्याशयिक रस में लाइपेज एंजाइम होता है, जो इमल्सीकृत वसा का पाचन करता है। लाइपेज एंजाइम वसा को वसीय अम्ल तथा ग्लिसरॉल में परिवर्तित कर देता है ।
(11). मानव में पाचित भोजन का अवशोषण केसे होता है ? समझाइए।

उत्तर- पाचित भोजन को क्षुद्रांत्र की भित्ति अवशोषित कर लेती है। क्षुद्रांत्र के आंतरिक आस्तर पर अनेक अँगुली जैसे प्रवर्ध होते हैं। जिन्हें दीर्घरोम कहते हैं। ये अवशोषण का सतही क्षेत्रफल बढ़ा देते हैं। दीर्वरोम में रुधिर वाहिकाओं की बहुतायत होती हैं। जो भोजन को अवशोषित करके शरीर को प्रत्येक कोशिका तक पहुँचाते हैं। यहाँ इसका उपयोग ऊर्जा प्राप्त करने, नए ऊतकों के निर्माण और पुराने ऊतकों की मरम्मत में होता है ।

बिना पचा भोजन बृहदांत्र में भेज दिया जाता हैं। जहाँ अधिसंख्य दीर्घरोम इस पदार्थ में से जल का अवशोषण कर लेते हैं।
(12). विभिन्न पथों द्वारा ग्लुकोज के विखण्डन का आरेख चित्र बनाइए। उत्तर-

(13). वायवीय श्वसन एवं अवायवीय श्वसन में अन्तर लिखिए।

उत्तर-

वायवीय श्वसन	अवायवीय श्वसन
1. यह O_{2} की उपस्थिति में होता है।	1. यह O_{2} की अनुपस्थिति में होता है।
2. इसमें उत्पाद CO_{2} व जल बनते है।	2. इसमें उत्पाद इथेनॉल व CO_{2} बनते है ।
3.इसमें ऊर्जा अत्यधिक मात्रा में बनती है।	3.इसमें अपेक्षाकृत कम ऊर्जा बनती है।
4. यह जीवों के मइट्रोकॉन्ड्र्र्या में होता है।	4. यह कुछ जीवाणुओं, यीस्ट में होता है।

(14). जलीय जीव श्वसन किस प्रकार से करते है ?

उत्तर- जो जीव जल में रहते है। वे जल में विलेय ऑक्सीजन का उपयोग करते हैं। क्योंकि जल में विलेय ऑक्सीजन की मात्रा वायु में ऑक्सीजन की मात्रा की तुलना में बहुत कम होती है, इसलिए जलीय जीवों की श्वास दर स्थलीय जीवों की अपेक्षा द्युत होती है। मछली अपने मुँह के द्वारा जल लेती है। तथा बलपूर्वक इसे क्लोम तक पहुँचाती है जहाँ विलेय ऑक्सीजन रुधिर ले लेता है।
मछली के हद्दय में केवल दो कोष्ठ होते है। यहाँ से रुधिर क्लोम में भेजा जाता है जहाँ यह ऑक्सीजनित होता है। और सीधा शरीर में भेज दिया जाता है। इस तरह मछलियों के शरीर में एक चक्र में केवल एक बार ही रुधिर हृदय में जाता है।

(15). मानव में श्वसन की क्रियाविधि को समझाइये।

उत्तर- नासा द्वार के माध्यम से वायु शरीर के अन्दर प्रवेश करती है । नासाद्वार में वायु महीन बालों द्वारा फिल्टर हो जाती है। जिससे शरीर में जाने वाली वायु धूल तथा दूसरी अशुद्धियाँ रहित होती है। इस मार्ग में श्लेष्मा की परत होती है जो इस प्रक्रम में सहायक होती है।

यहाँ से वायु कंठ से श्वासनली द्वारा फुफ्फुस में प्रवाहित होती है। कंठ में उपास्थि के वलय उपस्थित होते हैं। यह सुनिश्चित करता है कि वायु मार्ग निपतित न हो।

फुफ्फुस के अंदर श्वसन मार्ग(श्वसनी) छोटी और छोटी नलिकाओं में छोटी नलिकाओं (श्वसनिका) में विभाजित होता है। जो अन्त में गुब्बारे जैसी रचना बनाता है, जिसे वायु कूपिका (एलवियोलाई) कहते है । कूपिकाओं की भित्ति में रूधिर वाहिकाओं का विस्तृत जाल होता है । जब हम श्वास अंदर लेते हैं, हमारी पसलियाँ ऊपर उठती है एवं डायफ्राम चपटा हो जाता है, जिससे वक्ष गुहिका बड़ी हो जाती है। इससे वायु फुफ्फुस की वायु कूपिकाओं में भर जाती है। रूधिर शेष शरीर से एकत्रित CO_{2} कूपिकाओं में छोड़ने के लिए लाता है। यहाँ वायु कूपिकाओं में O_{2} एवं CO_{2} का आदान प्रदान होता है।

फु फ्फु स की वायु से श्वसन वर्णक हीमोग्लोबिन ऑक्सीजन लेकर, उन ऊतकों तक पहुँचाते हैं जिनमें ऑक्सीजन की कमी है। हीमोग्लोबिन ऑक्सीजन के लिए उच्च बंधुता रखता है। हीमोग्लोबिन लाल रुधिर कणिकाओं में उपस्थित होता है। कार्बन डाइऑक्साइड जल में अधिक विलेय है और इसलिए

इसका परिवहन हमारे रुधिर में विलेय अवस्था होता है। नोट:गैसों के आदान प्रदान में वायु कूपिकाएं अधिकतम विनियम करती है। क्योंकि वायु कूपिकाओं का सतही क्षेत्रफल अधिक होता है। जिससे गैसों का विनिमय दक्ष होता है।
(16). मानव में दोहरा रक्त परिसंचरण की व्याख्या कीजिए। अथवा मानव हृदय में ऑक्सीजनित व विऑक्सीजनित रक्त प्रवाह के प्रक्रम को समझाइये । अथवा मानव में $\mathrm{O}_{2}, \mathrm{CO}_{2}$ परिवहन तथा विनिमय का व्यवस्थित चित्र बनाइए।
उत्तर- मानव हृदय में चार कोष्ठ होते है- दायां आलिन्द, बायां आलिन्द एवं दायां निलय, बायां निलय ।
आलिन्द व निलय के मध्य वाल्व लगे होते है। जब आलिन्द या निलय संकुचित होते है । तो वाल्व रूधिर को विपरीत दिशा में प्रवाहित होने से रोकते है।

ऑक्सीजन युक्त रूधिर फुफ्फुस से हृदय में बाई ओर बायें आलिन्द में आता है। बायें आलिन्द में संकुचन से रक्त बायें निलय में प्रवेश करता है। बायें निलय के संकुचन से रक्त शरीर के विभिन्र भागों में पम्प किया जाता है। रक्त से ऑक्सीजन कोशिकाओं द्वारा ग्रहण कर ली जाती है तथा यह विऑक्सीजनित (अशुद्ध) रक्त शरीर के विभिन्ग भागों से एकत्रित कर महाशिरा द्वारा दायें आलिन्द में डाला जाता है। इस आलिन्द में संकुचन से रक्त दायें निलय में प्रवेश करता है। दायें निलय में संकुचन होने पर रक्त को फुफ्फुसीय धमनी द्वारा फेफड़ों में लाया जाता है। यहाँ रक्त पुनः ऑक्सीजनित (शुद्ध) हो जाता है । इस प्रकार प्रत्येक एक चक्र में रक्त दो बार हृदय में आता है। इसे दोहरा परिसंचरण कहते हैं।

(17). पक्षी और स्तनधारी जंतुओं में हृदय का दायाँ व बायाँ भाग ऑक्सीजनित तथा विऑक्सीजनित रुधिर को मिलने से रोकने में लाभदायक केसे होता है ? समझाइए।
उत्तर- पक्षी और स्तनधारी जंतुओं को जिन्हें अपने शरीर का तापक्रम बनाए रखने के लिए निरंतर उच्च ऊर्जा की आवश्यकता होती है। उनमें हृदय द्वारा ऑक्सीजनित तथा विऑक्सीजनित रुधिर का बँटवारा शरीर को उच्च दक्षतापूर्ण ऑक्सीजन की पूर्ति कराता है। जिससे इनमें श्वसन द्वारा ऊर्जा उत्पन्न की जा सके। उन जंतुओं में जिन्हें इस कार्य के लिए ऊर्जा का उपयोग नहीं करना होता है, शरीर का तापक्रम पर्यावरण के तापक्रम पर निर्भर होता है। जल स्थल चर या बहुत से सरीसृप जैसे जंतुओं में तीन कोष्टीय हृदय होता है और ये ऑक्सीजनित तथा विऑक्सीजनित रुधिर धारा को कुछ सीमा तक मिलना भी सहन कर लेते हैं।
(18). लसिका क्या है ? लसीका के दो कार्य लिखिए।

उत्तर- लसीका एक प्रकार का द्रव है जो वहन में सहायता करता है । कोशिकाओं की भित्ति में उपस्थित छिद्रों द्वारा कुछ प्लाज्मा, प्रोटीन तथा रुधिर कोशिकाएँ बाहर निकलकर ऊतक के अंतर्कोशिकीय अवकाश में आ जाते हैं तथा ऊतक तरल या लसीका का निर्माण करते हैं ।
कार्य- क्षुद्रांत्र द्वारा अवशोषित पाचित वसा का वहन लसीका द्वारा होता है और अतिरिक्त तरल को बाह्य कोशिकीय अवकाश से वापस रूधिर में ले जाता है।
(19). शिरा व धमनी में क्या अन्तर है ?

उत्तर-

शिरा	धमनी		
1. रूधिर को अंगों से हदय में लाती है ।	1. रूधिर की हृद से अंगों तक ले जाती है।		
2. शिराओं में अशुद्ध रक्त प्रवाहित होता है, अपवाद - फुफ्फुसीय शिरा	2. धमनी में शुद्ध रक्त प्रवाहित होता है। अपवाद - फु फ्फुसीय धमनी		
3. शिरा में रक्त दाब कम होता है।	3. धमनी में रक्त दाब उच्च होता है।		
4. शिरा में वाल्व पाये जाते है।	4. धमनी में वाल्व नहीं पाये जाते है।		
5. शिरा की दीवार पतली			
होती है।			5. धमनी की दीवार मोटी
:---			
होती है।			

(20). रक्तदाब किसे कहते हैं। क्या होगा यदि रक्तदाब उच्च हो जाता हैं ? समझाइए।
उत्तर- रुधिर वाहिकाओं की भित्ति के विरुद्ध जो दाब लगता है उसे रक्तदाब कहते हैं।
यह दाब शिराओं की अपेक्षा धमनियों में बहुत अधिक होता है। धमनी के अंदर रुधिर का दाब निलय प्रकुंचन (संकुचन) के दौरान प्रकुंचन दाब तथा निलय अनुशिथिलन के दौरान धमनी के अंदर का दाब अनुशिथिलन दाब कहलाता है। सामान्य प्रकुंचन दाब लभगग 120 mm (पारा) तथा अनुशिथिलन दाब लगभग 80 mm (पारा) होता है । स्फ ईग्मोमैनोमीटर नामक यंत्र से रक्तदाब नापा जाता है । उच्च रक्तदाब को अति तनाव भी कहते हैं और इसका कारण धमनिकाओं का सिकुड़ना है,इससे रक्त प्रवाह में प्रतिरोध बढ़ जाता है। इससे धमनी फट सकती है तथा आंतरिक रक्रम्रवण हो सकता है।
(21). वाष्पोत्सर्जन किसे कहते है ? वाष्पोत्सर्जन का महत्व लिखिए।

उत्तर- पादप के वायवीय भागों द्वारा वाष्प के रूप में जल की हानि वाष्पोत्सर्जन कहलाती है।
वाष्पोत्सर्जन का महत्व - वाष्पोत्सर्जन, जल के अवशोषण एवं जड़ से पत्तियों तक जल तथा उसमें विलेय खानिज लवणों के उपरिमुखी गति में सहायक है । वाष्पोत्सर्जन पौधों के ताप नियमन में भी सहायक है। दिन में जब रंध्र खुले होते हैं तब वाष्पोत्सर्जन, जाइलम में जल की गति के लिए, मुख्य प्रेरक बल होता है।
(22). पादपों में जल तथा खनिज लवणों का परिवहन समझाइये।

उत्तर- जाइलम ऊतक में जड़ों, तनों और पत्तियों की वाहिनिकाएँ तथा वाहिकाएँ आपस में जुड़कर जल संवहन वाहिकाओं का एक सतत जाल बनाती हैं जो पादप के सभी भागों से संबद्ध होता है।

जड़ों की कोशिकाएँ मृदा के संपर्क में हैं तथा वे सक्रिय रूप से आयन प्राप्त करती हैं। यह जड़ और मृदा के मध्य आयन सांद्रण में एक अंतर उत्पन्न करता है । इस अंतर को समास्त करने के लिए मृदा से जल जड़ में प्रवेश कर जाता है। इस प्रकार जल अनवरत गति से जड़ के जाइलम में जाता है और जल के स्तंभ का निर्माण करता है जो लगातार ऊपर की ओर धकेला जाता है। पर यह दाब जल को पादपों की अधिक ऊँचाई तक पहुँचाने के लिए पर्यास्त नहीं है । पादप जाइलम द्वारा अपने सबसे ऊँचाई के बिंदु तक जल पहुँचाने के लिए वाष्पोत्सर्जन की युक्ति अपनाते हैं। वाष्पोत्सर्जन के कारण जिस जल की रंध्र के द्वारा हानि हुई है उसका प्रतिस्थापन पत्तियों में जाइलम वाहिकाओं द्वारा हो जाता है। वास्तव में कोशिका से जल के अणुओं का वाष्पन एक चूषण उत्पन्न करता है जो जल को जड़ों में उपस्थित जाइलम कोशिकाओं द्वारा खींचता है । अतः वाष्पोत्सर्जन, जल के अवशोषण एवं जड़ से पत्तियों तक जल तथा उसमें विलेय खनिज लवणों के उपरिमुखी गति में सहायक है। जल के वहन में मूल दाब रात्रि के समय विशेष रूप से प्रभावी है। दिन में जब रंक्र खुले हैं वाष्पोत्सर्जन कर्षण, जाइलम में जल की गति के लिए, मुख्य प्रेरक बल होता है।

(23). पादपों में भोज्य पदार्थो का स्थानांतरण समझाइये।

उत्तर- उपापचयी क्रियाओं के उत्पाद, विशेष रूप से प्रकाशसंश्लेषण, के विलेय उत्पादों का वहन स्थानांतरण कहलाता है और यह संवहन ऊतक के फ्लोएम नामक भाग द्वारा होता है। प्रकाशसंश्लेषण के उत्पादों के अलावा फ्लोएम अमीनो अम्ल तथा अन्य पदार्थो का परिवहन भी करता है। भोजन तथा अन्य पदार्थो का स्थानांतरण संलग्न साथी कोशिका की सहायता से चालनी नलिका में उपरिमुखी तथा अधोमुखी दोनों दिशाओं में होता है। फ्लोएम द्वारा भोज्य पदार्थो का स्थानांतरण ऊर्जा के उपयोग से पूरा होता है। सुक्रोज जैसे पदार्थ फ्लोएम ऊतक में ए. टी.पी. से प्राप्त ऊर्जा से ही स्थानांतरित होते हैं। यह ऊतक का परासरण दाब बढ़ा देता है जिससे जल इसमें प्रवेश कर जाता है। यह दाब भोज्य पदार्थो को फ्लोएम द्वारा उस ऊतक तक ले जाता है जहाँ दाब कम होता है। यह फ्लोएम ऊतक पादप की आवश्यकता के अनुसार भोज्य पदार्थो का स्थानांतरण कराता है । उदाहरण के लिए, बसंत ऋतु में जड़ व तने के ऊतकों में भंडारित शर्करा का स्थानांतरण कलिकाओं में होता है जिसे वृद्धि के लिए ऊर्जा की आवश्यकता होती है।
(24). मानव रूधिर से नाइट्रोजनी उत्सर्जी पदार्थो को बाहर निकालने की क्रियाविधि को समझाइए । अथवा मानव उत्सर्जन की क्रियाविधि समझाइए।
उत्तर- मानव के उत्सर्जन तंत्र में एक जोड़ा वृक्क, एक मूत्रवाहिनी, एक मूत्राशय तथा एक मूत्रमार्ग होता है । वृक्क में मूत्र बनने के बाद मूत्रवाहिनी में होता हुआ मूत्राशय में आ जाता है तथा यहाँ तब तक एकत्र रहता है जब तक मूत्रमार्ग से यह निकल नहीं जाता है। प्रत्येक वृक्क में अनेक आधारी निस्यंदन एकक होते हैं जिन्हें वृक्काणु (नेफ्रॉन) कहते हैं। नेफ्रॉन वृक्क की सूक्ष्म संरचनात्मक और कार्यात्मक इकाई है। इसी नेफ्रॉन में रक्त से नाइट्रोजनी वर्ज्य पदार्थो (यूरिया या यूरिक अम्ल) का निस्यंदन होता है । प्रारंभिक निस्यंद में कुछ पदार्थ, जैसे- ग्लूकोज, अमीनो अम्ल,

लवण और प्रचुर मात्रा में जल रह जाते हैं। इन पदार्थ का चयनित पुनरवशोषण हो जाता है।

(25). अपोहन / कृत्रिम वृक्क क्या है ? इसकी क्रियाविधि समझाइये। इसका उपयोग लिखिये।
उत्तर- वृक्क में सीमित रुधिर प्रवाह, संक्रमण या आघात वृक्क की क्रियाशीलता को कम कर देते हैं। इस कारण शरीर में विषैले अपशिष्ट संचित होते है, जिससे मृत्यु भी हो सकती है । वृक्क के अक्रिय होने की अवस्था में कृत्रिम वृक्क का उपयोग किया जा सकता है।

एक कृत्रिम वृक्क नाइट्रोजनी अपशिश्ट उत्पादों को रुधिर से अपोहन (डायलिसिस) द्वारा निकालने की एक युक्ति है। कृत्रिम वृक्क बहुत सी अर्धपारगम्य अस्तर वाली नलिकाओं से युक्त होती है। ये नलिकाएँ अपोहन द्रव से भरी टंकी में लगी होती हैं। रोगी के रुधिर को इन नलिकाओं से प्रवाहित कराते हैं। इस मार्ग में रुधिर से अपशिष्ट उत्पाद विसरण द्वारा अपोहन द्रव में आ जाते हैं। शुद्धिकृत रुधिर वापस रोगी के शरीर में पंपित कर दिया जाता है। यह वृक्क के कार्य के समान है लेकिन इसमें कोई पुनरवशोषण नहीं होता है।

अंक भार - 6

प्रश्न - $4=$ वस्तुनिष्ठ-2, अति.लघु-1, दीर्घ-1
(1). गंध का पत्ता लगाने वाला ग्राही है ?
(1) स्वाद ग्राही
(2) घ्राण ग्राही
(3) श्रवण ग्राही
(4) स्पर्श ग्राही
(2)
(2). जंतुओं में नियंत्रण एवं समन्वय करने वाला तंत्र है ?
(1) श्वसन तंत्र
(2) उत्सर्जन तंत्र
(3) तंत्रिका तंत्र
(4) परिसंचरण तंत्र
(3)
(3). प्रतिवर्ती क्रियाएँ नियंत्रित होती है ?
(1) मस्तिष्क द्वारा
(2) हार्मोन द्वारा
(3) मेरूरज्जु द्वारा
(4) कोई नहीं
(3)
(4). प्रतिवर्ती चाप कहाँ बनते है ?
(1) मेरुरज्जु
(2) आमाशय
(3) मस्तिष्क
(4) फेफड़े
(1)
(5). मानव शरीर का मुख्य समन्वय केंद्र है ?
(1) जनन
(2) उत्स्सर्जन
(3) मस्तिष्क
(4) पाचन
(3)
(6). दो तंत्रिका कोशिका (न्यूरॉन) के मध्य खाली स्थान को कहते है ?
(1) सिनेप्स (अंतर्ग्रथन)
(2) द्रुमिका
(3) एक्जॉन
(4) आवेश
(1)
(7). मस्तिष्क के किस भाग में सुनने , सुँघने , देखने व भूख के केंद्र पाये जाते है ?
(1) अग्रमस्तिष्क
(2) मध्यमस्तिष्क
(3) पश्चमस्तिष्क
(4) कोई नहीं
(1)
(8). मेडुला ऑब्लागेटा मस्तिष्क के किस भाग में पाया जाता है ?
(1) अग्रमस्तिष्क
(2) मध्यमस्तिष्क
(3) पश्चमस्तिष्क
(4) उपरोक्त सभी
(3)
(9). अनैच्छिक क्रियाएँ जैसे रक्तदाब, लार आना , वमन नियंत्रित होती है ?
(1) प्रमस्तिष्क
(2) मेडुला ऑब्लागेटा
(3) मध्यमस्तिष्क
(4) उपरोक्त सभी
(2)
(10). अनुमस्तिष्क किस भाग में पाया जाता है ?
(1) अग्रमस्तिष्क
(2) मध्यमस्तिष्क
(3) पश्चमस्तिष्क
(4) उपरोक्त सभी
(3)
(11). सीधी रेखा में चलना, साइकिल चलाना जैसी संतुलन क्रियाएँ मस्तिष्क के किस भाग द्वारा नियंत्रित होती है ?
(1) अग्रमस्तिष्क
(2) मध्यमस्तिष्क
(3) अनुमस्तिष्क
(4) कोई नहीं
(3)
(12). सोचने , तर्क शक्ति , याददाश्त के केंद्र होते है ?
(1) अग्रमस्तिष्क
(2) मध्यमस्तिष्क
(3) पश्चमस्तिष्क
(4) कोई नहीं
(1) उत्तर- प्रतिवर्ती क्रिया है ?
(15). नर जनन हार्मोन है ?
(16). मादा जनन हार्मोन है ?
(1) इंसुलिन
(2) थायरॉक्सिन
(3) एस्ट्रोजन
(4) साइटोकाइनिन
(21). मस्तिष्क उतरदायी है ?
(1) सोचने के लिए
(4) उपरोक्त सभी

अतिलघुरात्मक प्रश्न

उत्तर- द्रुमाशय (द्रुमिका)

उत्तर- न्यूरॉन्स (तंत्रिका कोशिका) ?
(13). अंत: स्त्रावी ग्रंथियों द्वारा स्त्रावित रासायनिक पदार्थ कहलाता
(1) एन्जाइम
(2) हार्मोन
(3) प्रोटीन
(4) वसा
(2)
(14). शरीर की प्रधान (मास्टर) ग्रंथि है ?
(1) पीयूष
(2) हाइपोथैलेमस
(3) थाइराइड
(4) अण्डाशय
(1)
(1) इंसुलिन
(2) थाइरॉक्सिन
(3) वृद्धि हार्मोन
(4) टेस्टोस्टेरोन
(4)
(1) टेस्टोस्टेरोन
(2) एस्ट्रोजन
(3) इन्सुलिन
(4) वृद्धि हार्मोन
(17). थायरॉक्सिन हार्मोन के लिए उत्तरदायी तत्व है ?
(1) सोडियम
(2) आयोडीन
(3) पोटेशियम
(4) हाइड्रोजन
(18). थायरॉक्सिन हार्मोन की कमी से कौनसा रोग होता है ?
(1) मधुमेह
(2) बेरी - बेरी
(3) घेंघा (गॉइटर)
(4) रतौंधी
(19). इंसुलिन की कमी से कौनसा रोग होता है ?
(1) एड्स
(2) बेरी - बेरी
(3) घेंघा
(4) मधुमेह
(20). निम्न में से कौनसा पादप हार्मोन है ?
(2) हददय स्पंदन के लिए
(3) शरीर का संतुलन बनाने के लिए
(1). संवेदी सूचनाए तंत्रिका कोशिका (न्यूरॉन) के किस भाग द्वारा उपार्जित की जाती है ?
(2). तंत्रिका ऊतक किसके संगठित जाल का बना होता है ?
(3). पर्यावरण में अचानक हुई घटना की अनुक्रिया कहलाती है
(4). कें द्रीय तंत्रिका तंत्र के मुख्य अंग है ?

उत्तर- मस्तिष्क एवं मेरुरज्जु
(5). मस्तिष्क से निकलने वाली तंत्रिकाएँ कहलाती है ?

उत्तर- कपाल तंत्रिकाएँ
(6). मेरुरज्जु से निकलने वाली तंत्रिकाएँ कहलाती है ?

उत्तर- मेरु तंत्रिकाएँ
(7). कशेरुक दंड किस तंत्रिका ऊतक की सुरक्षा करता है ?

उत्तर- मेरूरज्जु
(8). परागनलिका का बीजांड की ओर वृद्धि करना कौनसी गति है ?
उत्तर- रसानानुवर्तन
(9). पादपों की जड़ो की गति किस गति का उदाहरण है ?

उत्तर- धनात्मक गुरुत्वानुवर्ती एवं ऋणात्मक प्रकाशनुवर्तन
(10). छुईमुई पादप की पत्तियों में कौनसी गति होती है ?

उत्तर- कंपानुकुंचन
(11). पादप के तने की वृद्धि किस गति का उदाहरण है ?

उत्तर- धनात्मक प्रकाशनुवर्तन एवं ऋणात्मक गुरुत्वानुवर्ती
(12). मटर के प्रतान की गति किस गति का उदाहरण है ?

उत्तर- स्पर्शानुवर्तन
(13). पादपों में रासायनिक समन्वय किस पदार्थ द्वारा होता है ?

उत्तर- हार्मोन
(14). पादपों में हार्मोन का परिसंचरण किस विधि द्वारा होता है ?

उत्तर- विसरण द्वारा
(15). फलों और बीजों में किस हार्मोन की सांद्रता अधिक होती है ?
उत्तर- साइटोकाइनिन
(16). तने की पर्व संधियों की लम्बाई में वृद्धि हेतु उतरदायी पादप हार्मोन है ?
उत्तर- जिब्बरेलिन
(17). पादप के प्ररोह के अग्रभाग में संश्लेषित होने वाला हार्मोन है ?
उत्तर- ऑक्सिन
(18). पादप वृद्धि संदमक हार्मोन का नाम लिखिए।

उत्तर- एब्सिसिक अम्ल
(19). कोशिका विभाजन को प्रेरित करने वाला हार्मोन है ?

उत्तर- साइटोकाइनिन
(20). पतियों का मुरझाना या झड़ना किस हार्मोन का प्रभाव दर्शाता है ?
उत्तर- एब्सिसिक अम्ल
(21). अधिवृक्क (एड्रीनल) ग्रंथि द्वारा स्त्रावित हार्मोन कहलाता है ?
उत्तर- एड्रीनलीन
(22). संकटकालीन हार्मोन है ?

उत्तर- एड्रीनलीन
(23). मोचक हार्मोन किस ग्रंथि द्वारा स्त्रावित होते है।

उत्तर- हाइपोथैलेमस
(24). पीयूष ग्रंथि को हार्मोन स्त्रावण के लिए प्रेरित करने वाला हार्मोन है ?
उत्तर- मोचक हार्मोन
(25). इंसुलिन हार्मोन किस ग्रंथि द्वारा स्त्रावित होता है ?

उत्तर- अग्नाशय
(26). रुधिर में शर्करा स्तर का नियमन कौनसा हार्मोन करता है ?

उत्तर- इंसुलिन
(27). शरीर की सबसे बड़ी अंत:स्त्रावी ग्रंथि है ?

उत्तर- थाइरॉइड
(28). मिश्रित ग्रंथि कौनसी ग्रंथि है ?

उत्तर- अग्नाशय
(29). स्त्रावित हार्मोन का समय और मात्रा का नियंत्रण किस विधि से होता है ?
उत्तर- पुनर्भरण विधि
(30). प्रतिवर्ती क्रिया का उदाहरण लिखो ।

उत्तर- आग की लौ से हाथ पीछे खींचना
दीर्घउत्तरीय प्रश्न
(1). पादपों में रासायनिक समन्वय किस प्रकार होता है ?

उत्तर- पादपों में रासायनिक समन्वय हार्मोन द्वारा होता है। ऑक्सिन हार्मोन पादप शीर्ष में वृद्धि करता है। जिब्बरेलिन हार्मोन तने की लम्बाई में वृद्धि करता है। एवं साइटोकाइनिन कोशिका विभाजित को प्रेरित करता है।
(2). (a) प्रतिवर्ती क्रिया किसे कहते है ?
(b) प्रतिवर्ती चाप क्या होता है ?

उत्तर- (a) अचानक होने वाली अनुक्रियाए जो उद्दीपन से स्वाभाविक उत्पन्न हो , प्रतिवर्ती क्रिया कहलाती है।
(b) वह प्रक्रम जो संवेदी अनुक्रियाओं के आगम संकेतो का पता लगाने तथा इनके अनुसार निर्गम क्रिया करने का कार्य करता है , प्रतिवर्ती चाप कहलाता है। प्रतिवर्ती चाप मेरुरज्जु में बनते है।
(3). (a) न्यूरॉन के विभिन्न भागों के नाम लिखिए।
(b) न्यूरॉन के कार्य लिखिए।

उत्तर- (a) कोशिकाकाय , द्रुमिका एवं एक्जॉन
(b) न्यूरॉन तंत्रिका तंत्र में मस्तिष्क से सूचना का आदान प्रदान करता है। यह कार्य विधुत रासायनिक संकेत द्वारा होता है।
(4). स्पर्शानुवर्तन गति एवं प्रकाशनुवर्तन गति की परिभाषा लिखिए।
उत्तर- स्पर्शानुवर्तन - यह गति स्पर्श या सम्पर्क के कारण प्रेरित होती है। उदा.-मटर का प्रतान
प्रकाशानुवर्तन - प्रकाश के प्रभाव से पादप के भाग गति करते है। तना प्रकाश की ओर (धनात्मक प्रकाशनुवर्तन) एवं जड़े प्रकाश से दूर (ऋणात्मक प्रकाशनुवर्तन) गति करती है।
(5). अनैच्छिक क्रिया एवं प्रतिवर्ती क्रिया में अन्तर लिखिए ।

उत्तर-

अनैच्छिक क्रिया	प्रतिवर्ती क्रिया
1. ये मस्तिष्क द्वारा नियंत्रित होती है।	1. ये मेरुर्जु द्वारा नियंत्रित होती है।
2.इनमे थोड़ा समय लगता है।	2. ये अचानक सहज होती है।
3. उदाहरण -हृदय धड़कना, श्वसन , पाचन	3. छींकना , मुँह में लार आना

(6). पीयूष ग्रंथि द्वारा स्त्रावित हार्मोन का नाम उसके कार्य एवं कमी से होने वाले रोग का नाम लिखिए।
उत्तर- हार्मोन - वृद्धि हार्मोन
कार्य - शरीर के सभी अंगो में वृद्धि प्रेरित करना
रोग - बौनापन
(7). थायरॉइड ग्रंथि के हार्मोन का नाम , उसके कार्य एवं कमी से होने वाले रोग का नाम लिखिए।
उत्तर- हार्मोन - थायरॉक्सिन
कार्य - शरीर में कार्बोहाइड्रेट , वसा एवं प्रोटीन के उपापचय का नियंत्रण करना
रोग - घेंघा (गॉइटर)
(8). कोई दो ग्रंथियों के नाम एवं उनके द्वारा स्त्रावित हार्मोन के नाम लिखिए।
उत्तर- वृषण - टेस्टोस्टेरोन
अण्डाशय - एस्ट्रोजन
(9). संकट कालीन परिस्थितियों में एड्रीनलीन हार्मोन किस प्रकार कार्य करता है ?
उत्तर- अधिवृक्क ग्रंथि से स्त्रावित यह हार्मोन हुदय सहित लक्ष्य अंगो पर विशिष्ट कार्य करता है। परिणामस्वरूप हृदय की धड़कन बढ़ जाती है। ताकि पेशियों तक ऑक्सीजन की आपूर्ति हो सके पाचन तंत्र एवं त्वचा में रुधिर की आपूर्ति कम हो जाती है। कंकाली पेशियों , डायफ्राम एवं पसलियों के संकुचन से श्वसन दर बढ़ जाती है। ये सभी अनुक्रिया जंतु को विषम परिस्थितियों से निपटने के लिए तैयार करती है।
(10). हमारे शरीर में ग्राही का क्या कार्य है। यदि ग्राही उचित कार्य नहीं करे तो क्या समस्याए उत्पन्न हो सकती है।
उत्तर- ग्राही ज्ञानेन्द्रियो की विशेष कोशिकाए होती है। जो वातावरण एवं तंत्रिका तंत्र के मध्य सूचनाओ का आदान - प्रदान करती है।
समस्याए - यदि ग्राही उचित प्रकार से कार्य नहीं करेगा तो सूचनाएँ मस्तिष्क एवं मेरुरज्ज़ु तक नहीं पहुंच सकेगी एवं सम्बंधित कार्य सम्पादित नहीं हो सकेगा ।

अंक भार - 7
(1). अलैंगिक जनन मुकुलन द्वारा होता है ?
(1) अमीबा
(2) यीस्ट
(3) प्लेज्मोडियम
(4) लेस्मानिया
(2). निम्न में से मादा जनन तंत्र का भाग नहीं है ?
(1) अंडाशय
(2) गर्भाशय
(3) शुक्रवाहिका
(4) डिंबवाहिनी

(2)

(3) उत्तर- राइजोपस
(3). बहुकोशिकीय सरल संरचना वाले जीवों में सामान्यत: जनन की सरलतम विधि है ?
(1) पुनरुद्भ्भव
(2) खंडन
(3) बीजाणु समासंघ
(4) मुकुलन

(2)

(4). स्पाइरोगाइरा शैवाल में जनन की विधि है ?
(1) खंडन
(2) मुकुलन
(3) पुनरुद्भवन
(4) कोई नहीं
(5). कायिका प्रवर्धन की तकनीक है ?
(1) परतन
(2) कलम
(3) रोपण
(4) उपरोक्त सभी
(4)
(6). पत्ती द्वारा जनन होता है ?
(1) हाइड्रा
(2) यीस्ट
(3) ब्रायोफिलम
(4) आलु
(3)
(7). परागकोश में होते है ?
(1) बाह्ययदल
(2) अंडाशय
(3) अंडप
(4) परागकण
(4)
(8). पादपों में फल का निर्माण करता है ?
(1) परागकण
(2) अण्डाशय
(3) बाह्ययदल
(4) दल
(9). पादपों में बीज बनते है ?
(1) बाह्ययदल से
(2) दल से
(3) बीजाण्ड से
(4) पुंकेसर से
(10). मानव में निषेचन स्थल है ?
(1) फैलोपियन नलिका
(2) अण्डाशय
(3) गर्भाशय
(4) शुक्राशय
(1)

रिक्त स्थान
(11). कोशिका के केन्द्रक के डी. एन.ए में. \qquad संश्लेषण हेतु सूचना निहित होती है।
उत्तर- प्रोटीन
(12). जनन की मूल घटना डी. एन.ए की. \qquad . बनाना है।
उत्तर- प्रतिकृति
(13). विभिन्नताएँ. का आधार है।
उत्तर- जैव - विकास
(14). विशिष्ट कार्य हेतु विशिष्ट कोशिकाएँ संगठित होकर.

का निर्माण करती है।
(2) (25). मलेरिया परजीवी का नाम लिखिए।

उत्तर- प्लाज्मोडियम
(26). प्लाज्मोडियम में जनन की विधि है -
(3) उत्तर- बहुखण्डन
(27). कै लस किसे कहते है ?

उत्तर- उत्तक संवर्धन में कोशिकाएं विभाजित होकर छोटा समूह बनाती है, जिसे कैलस कहते है।
(28). दो एक कोशिकीय जीवों के नाम लिखिए।

उत्तर- अमीबा, पैरामीशियम
(29). भुण किसे कहते है।

उत्तर- निषेचित अण्डा विभाजित होकर कोशिकाओं की गोल संरचना बनाता है, भ्रूण कहलाता है।
(30). भूण का रोपण कहाँ होता है।

उत्तर- गर्भाशय में
(31). कायिक प्रवर्धन में पादप के कौनसे भाग का उपयोग होता है।
उत्तर- जड़, तना एवं पत्तियों
(32). उत्तक संवर्धन तकनीक का एक उपयोग लिखिए।

उत्तर- सजावटी पौधो के संवर्धन में

(33). पुष्प के नर एवं मादा जननांग के नाम लिखिए।

उत्तर- नर जननांग -पुंकेसर
मादा जननांग - स्त्रीकेसर
(34). स्त्रीकेसर के विभिन्न भागों के नाम लिखिए।

उत्तर- अण्डाशय , वर्तिका, वर्तिकाग्र
(35). टेस्टोस्टेरोन हार्मोन के कार्य लिखिए।

उत्तर- शुक्रणुु उत्पादन का नियंत्रण
नर में यौवनावस्था लक्षणों का नियंत्रण
लघुतरात्मक प्रश्न
(36). प्लेनेरिया में पुनरुद्भवन द्वारा जनन कैसे होता है ?

उत्तर- प्लेनेरिया जैसे सरल प्राणियों को यदि कई टुकड़ो में काट दिया जाये तो प्रत्येक टुकड़ा विकसित होकर पूर्ण जीव का निर्माण कर लेता है। यह पुनरुद्भवन कहलाता है। यह विशिष्ट कोशिकाओं द्वारा संपादित होता है।
(37). प्लेनेरिया में पुनरूद्भवन (पुनर्जनन) का चित्र बनाइए। उत्तर-

(38). हाइड्रा में मुकुलन को सचित्र समझाइए।

उत्तर- हाइड्रा में नियमित कोशिका विभाजन से शरीर पर एक उभार मुकुल बनाता है। यह मुकुल पूर्ण विकसित होकर नया हाइड्रा बनाता है।

(39). अमीबा एवं लेस्मानिया में द्विखंडन का चित्र बनाइए। उत्तर-

(40). कायिक प्रवर्धन के लाभ बताइए।

अथवा

कुछ पौधो को उगाने में कायिक प्रवर्धन का उपयोग क्यों किया जाता है।
उत्तर- पौधो में पुष्प एवं फल कम समय में लगते है।

- यह विधि केला , संतरा, गुलाब जैसे पौधो को उगाने में उपयोगी है, जो बीज उत्त्पन्न करने की क्ष्तमता खो चुके है। - इस विधि से उत्पन्न पौधे आनुवंशिक रूप से जनक पौधे के समान होते है।
(41). राइजोपस कवक में जनन कैसे होता है।

उत्तर- राइजोपस कवक में विशेष गोल संरचनाए बीजाणु धानी होती है। जिनमे बीजाणु पाये जाते है। ये बीजाणु वृद्धि करके नया राइजोपस जीव बनाते है। यह बीजाणु समासंघ है।
(42). राइजोपस में बीजाणु समासंघ का चित्र बनाइए। उत्तर-

उत्तर- जीवों की जनन कोशिकाओं में होने वाला विभाजन जिससे गुणसूत्रों की संख्या आधी हो जाती है, अर्द्धसूत्री विभाजन कहलाता है।
महत्व - नर एवं मादा युग्मको के निर्माण में।
(44). एकलिंगी पुष्प किसे कहते है ? उदाहरण दीजिए।

उत्तर- जब पुष्प में पुंकेसर या स्त्रीकेसर में से कोई एक जननांग उपस्थित हो तो , एकलिंगी पुष्प कहते है। उदा. -पपीता , तरबूज
(45). उभयलिंगी पुष्प किसे कहते है ? उदाहरण दीजिए।

उत्तर- जब पुष्प में पुंकेसर एवं स्त्रीकेसर दोनों जननांग उपस्थित हो तो उभयलिंगी पुष्प कहते है। उदा.- सरसो , गुड़हल
(46). स्वपरागण एवं परपरागण में अंतर लिखिए।

स्वपरागण	परपरागण		
	इसमें परागकणों का		
स्थानांतरण उसी पुष्प की			
वर्तिकाग्र पर होता है।		\quad	स्थानांतरण एक पुष्प से दूसरे
:---			
पुष्प की वर्तिकाग्र पर होता है			

(47). पुष्प की अनुदैर्ध्य काट का नामांकित चित्र बनाइए ।

उत्तर-

(48). अंकुरण किसे कहते है ?

उत्तर- बीज में उपस्थित भ्रूण उपयुक्त परिस्थितियों में नवोद्भिद् में विकसित हो जाता है , इस प्रक्रम को अंकुरण कहते है।
(49). वर्तिकाग्र पर परागकणों के अंकुरण का नामांकित चित्र बनाइए।

(50). यौवनारंभ किसे कहते है ?

उत्तर- किशोरावस्था में जीवों में जननांग परिपक्व होना प्रारम्भ करते है,इस अवधि को यौवनारंभ कहते है।
(51). नर जनन तंत्र किसे कहते है ? शुक्राणु का निर्माण किस अंग में होता है।
उत्तर- शुक्राणु उत्पादन करने वाले अंग एवं शुक्राणुओं को निषेचन के स्थान तक पहुंचाने वाले अंग, संयुक्त रूप से नर जनन तंत्र बनाते है।

- शुक्राणु निर्माण वृषण में होता है।
(52). नर जनन तंत्र के विभिन्न भागों के नाम लिखिए।

उत्तर- वृषण , शुक्रवाहिनी, शुक्राशय , शिश्न
(53). वृषण उदर गुदा से बाहर वृषण कोष में क्यों स्थित होते है।

उत्तर- शुक्राणु उत्पादन के लिए आवश्यक ताप शरीर के ताप से कम होता है।
(54). नर जनन तंत्र का नामांकित चित्र बनाइए।

उत्तर-

(55). मादा जनन तंत्र का नामांकित चित्र बनाइए।

उत्तर-

(56). मादा जनन तंत्र के विभिन्न भागों के नाम लिखिए।

उत्तर- अण्डाशय, अण्डवाहिनी, गर्भाशय , योनि
(57). लैंगिक जनन एवं अलैंगिक जनन में कोई चार अंतर लिखिए अथवा
अलैगिंक जनन की अपेक्षा लैंगिक जनन के क्या लाभ है ? उत्तर-

अलैंगिक जनन	लैंगिक जनन
इस जनन में एक ही प्राणी भाग लेता है।	इस जनन में दो प्राणी भाग लेते है।
इसमें युग्मकों का निर्माण नही होता है।	इसमें युग्मकों का निर्माण होता है।
संतति आनुवंशिक रूप से जनक	संतति आनुवंशिक रूप से के समान होती हैं।
विभिन्नता युक्त होती है।	
यह जनन उद्विकास मेंबाधक है।	यह उद्विकास में सहायक है।
उदा. अमीबा, हाइड्रा	पादप एवं जंतु

(58). प्लेसेंटा या अपरा किसे कहते है ?

उत्तर- भ्रूण एवं माँ के गर्भाशय के मध्य एक विशेष संरचना होती है,जो माँ से भ्रूण को पोषण प्रदान करती है , प्लेसेंटा कहलाती है।
(59). ऋतुस्ताव या रजोधर्म किसे कहते है ?

अथवा

क्या होता है , जब अंड का निषेचन नहीं होता ?
उत्तर- यदि अंडवाहिनी में निषेचन की क्रिया नहीं होती है। तो गर्भाशय की आंतरिक मोटी परत रक्तवाहिनियों के साथ टूटकर रक्तस्त्राव के रूप में बाहर निकलती है, जिसे ऋत्तुस्राव कहते है। इसकी अवधि 2 से 8 दिनों की होती है।
(60). यौन संचारित रोग किसे कहते है ? नाम लिखिए।

उत्तर- लैंगिक सम्पर्क से होने वाले रोगो को यौन संचारित रोग कहते है। उदा.- गोनेरिया, सिफिलिस, एड्स
(61). यदि पुरुष की शुक्रवाहिकाओ को अवरुद्ध कर दिया जाये तो क्या होगा।
उत्तर- शुक्राणुओं का स्थानांतरण रुक जायेगा जिससे निषेचन क्रिया सम्पन नहीं होगी।
(62). गर्भनिरोधक युक्तियों कौन - कौन सी है ? कोई दो के बारे में बताइए।
उत्तर- वैसेक्टोमी - नर में शुक्रवाहिनी को धागे से बांध दिया जाता है , जिससे शुक्राणुओ का स्थानांतरण रुक जाता है।
टयूबेक्टोमी - मादा में अंडवाहिनी को धागे से बांध दिया जाता है। जिससे अंड गर्भाशय तक नहीं पहुंच पाता है।
कॉपर टी अथवा लूप - इस विधि में लूप को गर्भाशय में स्थापित कर दिया जाता है।
(63). गर्भनिरोधक युक्तियाँ अपनाने के क्या कारण हो सकते है।

उत्तर- अनचाहे गर्भ को रोकने के लिए
यौन संचारित रोगो से बचाव के लिए

8. आनुवंशिकता

अंक भार - 4

(1). RRYY जीनी संरचना का बाह्य लक्षण होगा ।
(1) गोल, हरा
(2) झुर्रीदार, पीला
(3) गोल, पीला
(4) झुर्रीदार, हरा
(3)
(2). डीएनए का वह भाग जिसमें किसी प्रोटीन संश्लेषण के लिए सूचना होती है, उसे क्या कहते हैं-
(1) केंद्रक
(2) जीन
(3) गुणसूत्र
(4) लक्षण
(2)
(3). TtX tt के संकरण से प्राप्प संततियों का अनुपात होगा-
(1) $1: 1$
(2) $2: 1$
(3) $3: 1$
(4) $1: 3$
(1)
(4). शुद्ध लंबे पौथे (TT) व शुद्ध बौने पौधे ($\mathbf{t t}$) के संकरण से F_{1} पीढ़ी में प्राप्स संततियां होगीं -
(1) सभी बौने
(2) सभी लंबे
(3) तीन लंबे व एक बोना
(4) आधे लंबे व आधे बौने
(2)
(5). मटर के एक शुद्ध लंबे पौधे (TT) को एक शुद्ध बौने पौधे $(t t)$ के साथ संकरण कराया जाता है। F_{2} पीढ़ी शुद्ध लंबे और शुद्ध बौने पौधों का अनुपात होगा
(1) $1: 3$
(2) $2: 1$
(3) $3: 1$
(4) $1: 1$
(4)
(6). मटर के एक शुद्ध लंबे पौधे (TT) को एक शुद्ध बौने पौधे $(t t)$ के साथ संकरण कराया जाता है। F_{2} पीढ़ी में लंबे और बौने पौधों का अनुपात होगा-
(1) $1: 3$
(2) $3: 1$
(3) $2: 1$
(4) $1: 1$
(2)
(7). एक दम्पती की पहली दो संतान लड़की है, इस बार तीसरी संतान लड़का होने की क्या संभावना है-
(1) 100%
(2) 50%
(3) 67%
(4) 25%
(8). RrYy जीनी संरचना का बाह्य लक्षण होगा ।
(1) गोल, हरा
(2) झुर्रीदार, पीला
(3) गोल, पीला
(4) झुर्रीदार, हरा
(9). मेंडल ने पैतृक पौधों एवं F_{1} पीढी (प्रथम संतति पीढी) के पौधौं को किस प्रकार प्रास किया ?
(1) परपरागण द्वारा
(2) स्वपरागण द्वारा
(3) दोनों प्रकार से
(4) दोनों प्रकार से नहीं
(2)
(10). आनुवंशिकता का जनक है-
(1) डार्विन
(2) ह्युगो डी ब्रिज
(3) मेंडल
(4) लेमार्क
(11). मेंडल ने अपने प्रयोग किस पादप पर किए ?
(1) उद्यान मटर
(2) ब्रोकली

प्रश्न - $2=$ वस्तुनिष्ठ- 1 , दीर्ष -1 ,
(3) सरसों
(4) गुलाब
(1)
(12). आनुवंशिक लक्षणों के वाहक कौन होते है ?
(1) कोशिका
(2) हार्मोन
(3) एन्जाइम
(4) जीन
(4)
(13). मानव में अलिंग गुणसूत्रों की संख्या कितनी होती है ?
(1) 22 जोड़ी
(2) 23 जोड़ी
(3) 2 जोड़ी
(4) 46 जोड़ी
(1)
(14). मानव में लिंग गुणसूत्रों की संख्या कितनी होती है ?
(1) एक जोड़ी
(2) दो जोड़ी
(3) तीन जोड़ी
(4) चार जोड़ी
(1)
(15). जीन कहां स्थित होते हैं ?
(1) राइबोसोम पर
(2) गुणसूत्र पर
(3) लाइसोम पर
(4) कोशिका झिल्ली पर
(16). कौनसी विभिन्नताएँ अगली संतती में वंशागत होती है।
(1) अर्जित विभिन्नताएँ
(2) कायिक विभिन्रताएँ
(3) आनुवंशिक विभिन्गताएँ
(4) सभी विभिन्रताएँ
(17). किस प्रकार के जनन में विविधताएं अधिक प्रदर्शित होती हैं ?
(1) लैंगिक जनन से
(2) कायिक जनन से
(3) अलैंगिक जनन से
(4) सभी प्रकार के जनन से
(1)
(1). एक संकर संकरण की \mathbf{F}_{2} पीढ़ी का लक्षण प्ररूप अनुपात क्या होता है ?
उत्तर- $3: 1$ (3 लम्बे: 1 बौना)
(2). एक संकर संकरण की \mathbf{F}_{2} पीढ़ी का जीन प्ररूप अनुपात क्या होता है ?
उत्तर- 1:2:1
(3). द्वि संकर संकरण की \mathbf{F}_{2} पीढ़ी का लक्ष्षण अनुपात क्या होता है ?
उत्तर- $9: 3: 3: 1$
(4). आनुवंशिकता किसे कहते हैं।

उत्तर- प्राणियों में पीढी दर पीढी चलने वाले पूर्वजो के लक्षण और गुणों को आनुवांशिकता कहते हैं।
(5). कौनसा जीव अपना लिंग बदल सकता है ?
(3) उत्तर- घोंघा।
(6). जीन प्ररूप किसे कहते हैं ?

उत्तर- जीवों के आनुवंशिक संघटन को जीन प्ररूप कहते हैं।
(7). जीन क्या है ?

उत्तर- सजीवों की आनुवांशिक इकाई को जीन कहते हैं। जीन डीएनए का वह भाग होता है, जिसमें किसी प्रोटीन संश्लेषण के लिए सूचना होती है।
(8). गुणसूत्र क्या है ?

उत्तर- गुणसूत्र सभी जीवों की कोशिकाओं में पाये जाने वाले तंतु रूपी पिंड होते हैं, जो कि सभी आनुवांशिक गुणों को निर्धारित
 निश्चित रहती हैं।
(9). मानव में कौनसा गुणसूत्र आकार में सबसे छोटा होता है ?

उत्तर- Y गुणसूत्र आकार में सबसे छोटा होता है।
(10). एकल संकर संकरण प्रयोग पर आधारित नियम कौनसा है ?
उत्तर- प्रभाविता का नियम ।
(11). कौनसी विभिन्नताएँ अगली संतती में वंशागत होती है ।

उत्तर- आनुवंशिक विभिन्रताएँ ।
(12). मेंडल ने स्वतंत्र अपव्यूहन के नियम को सिद्ध करने के लिए किस प्रकार का प्रयोग किया था ?
उत्तर- द्विसंकर संकरण ।
(13). किस प्रकार के जनन में विविधताएं प्रदर्शित होती हैं ?

उत्तर- लैंगिक जनन में विविधता अपेक्षाकृत अधिक होती हैं।
(14). प्रभावी लक्षण किसे कहते हैं ?

उत्तर- लैंगिंक जनन वाले जीवों मे एक अभिलक्ष्ण के जीन के दो प्रतिरूप होते है। इन प्रतिरूपों के एक समान न होने की स्थिति में जो प्रतिरूप प्रकट होता है उसे प्रभावी लक्षण कहते हैं ।
(15). क्या सभी जीवों के नवजात का लिंग निर्धारण समान होता है ? समझाइये।
उत्तर- नहीं। सभी जीवों के नवजात का लिंग निर्धारण समान नहीं होता है। अलग-अलग स्पीशीज इसके लिए अलग-अलग युक्ति अपनाते हैं। कुछ पूर्ण रूप से पर्यावरण पर निर्भर करते हैं। इसलिए कुछ प्राणियों (जैसे कुछ सरीसृप) में लिंग निर्धारण निषेचित अंडे (युग्मक) के ऊष्मायन ताप पर निर्भर करता है कि संतति नर होगी या मादा। घोंघे जैसे कुछ प्राणी अपना लिंग बदल सकते हैं, जो इस बात का संकेत है कि इनमें लिंग निर्धारण आनुवंशिक नहीं है। लेकिन, मानव में लिंग निर्धररण आनुवंशिक आधार पर होता है।
(16). विभिन्रताओं से क्या तात्पर्य है ?

उत्तर- समान आनुवांशिक वाले जीवों में पाई जाने वाली असमानताएं विभिन्रताएं कहलाती हैं।

(17). वंशागति के नियमों का आधार क्या है ?

उत्तर- वंशागति के नियम इस बात पर आधारित है कि माता व पिता दोनों ही समान मात्रा में आनुवंशिक पदार्थ संतति में स्थानांतरित करते हैं।
(18). शुद्ध किस्म से क्या तात्पर्य है ?

उत्तर- ऐसे जीन जो किसी लक्षण विशेष के लिए अनेक पीढियों

तक अपने समान लक्ष्षण वाले जीव ही उत्पन्न करते है, उन्हें शुद्ध किस्म कहते हैं ।
(19). एक एकल जीव द्वारा उपार्जित लक्षण अगली पीढ़ी में वंशागत नहीं होते है क्यों ?
उत्तर- उपार्जित लक्षण का प्रभाव केवल कायिक कोशिका पर ही होता है। इनका प्रभाव आनुवंशिक पदार्थ DNA पर नहीं होता है। जबकि आनुवंशिक पदार्थ के लक्षण ही वंशागत होते है। अत: उपार्जित लक्षण सामान्यत: अगली पीढ़ी में वंशागत नहीं होते हैं।
(20). मेंडल को वंशागत नियमों के प्रतिपादन में सफलता कैसे मिली?
उत्तर- मेंडल से पहले भी बहुत से वैज्ञानिकों ने मटर एवं अन्य जीवों के वंशागत गुणों का अध्ययन किया था। परंतु मेंडल ने अपने विज्ञान एवं गणितीय ज्ञान को समिश्रित किया । मेंडल पहले वैज्ञानिक थे जिन्होंने प्रत्येक पीढ़ी के एक-एक पौधे द्वारा प्रदर्शित लक्ष्षणों का रिकॉर्ड रखा तथा गणना की। इससे उन्हें वंशागत नियमों के प्रतिपादन में सहायता मिली।
(21). मेंडल ने मटर के पौधे में कौन - कौनसे विपर्यासी (विकल्पी) लक्षणों का अध्ययन किया ?
उत्तर-

क्र.स.	विपर्यासी (विकल्पी) लक्षण	प्रभावी लक्षण	अप्रभावी लक्षण
1	पौधे की लम्बाई	लम्बापन	बौनापन
2	बीज की गोलाई	गोल	झुर्रीदार
3	बीज का रंग	पीला	हरा
4	फूल का रंग	बैंगनी	सफेद

(22). मेंडल ने अपने प्रयोगों के लिये किस पादप का चयन किया और क्यों ?
उत्तर- मेंडल ने अपने प्रयोगों के लिये उद्यान मटर के पौधे का चयन किया। मटर के पौधे में विपर्यासी विकल्पी लक्षण स्थूल रूप से दिखाई देते हैं । इनका जीवनकाल छोटा होता है । सामान्यतः स्वपरागण होता है, पस्तु कृत्रिम तरीके से परपरागण भी कराया जा सकता है। एक ही पीढ़ी में अनेक बीज बनाता है।
(23). मटर के लम्बे (प्रभावी) एवं बौने (अप्रभावी) लक्षणों वाले पौधों में संकरण कराने पर F_{2} पीढ़ी में प्राप्त संतति का लक्षण प्ररूप अनुपात रेखीय आरेख द्वारा स्पष्ट कीजिए। या
क्या होता है ? जब मटर के शुद्ध लम्बे (TT) व शुद्ध बौने $(t t)$ पौधे के बीच संकरण कराया जाता है। F_{1} पीढ़ी तथा F_{2} पीढ़ी का अनुपात बताइए।

> या

प्रभाविता के नियम को आरेख द्वारा समझाइए। अथवा एकल संकर संकरण प्रयोग को आरेख द्वारा समझाइए।
उत्तर- मटर के दो पौधो के मध्य एक जोड़ी विकल्पी (विपर्यासी) लक्षणों के मध्य क्रॉस को एकल संकर संकरण कहते है।

प्रथम पीढ़ी में जो लक्षण प्रकट होता है वह प्रभावी लक्षण होता है, जो लक्षण प्रकट नही होता वह अप्रभावी लक्षण कहलाता है। इस नियम को मेंडल का प्रभाविता का नियम कहा जाता है।

जब मटर के शुद्ध लम्बे (TT) व शुद्ध बौने ($\mathrm{tt)} \mathrm{पौधे} \mathrm{का}$ संकरण करवाया जाता है, तो F_{1} पीढी के सभी पौधे प्रभावी लक्ष्णण वाले (लम्बे) होगें।

जबकि F_{2} पीढ़ी में प्राप्त पौधे 75 प्रतिशत लम्बे तथा 25 प्रतिशत बौने होगें।
F_{2} पीढ़ी का लक्षण प्रारूप अनुपात $3: 1$
(3 लम्बे : 1 बौने)
F_{2} पीढ़ी का जीन प्रारूप अनुपात $1: 2: 1$
(1 शुद्ध लम्बा : 2 अशुद्ध लम्बे : 1 बौना)
(24). द्विसंकर संकरण से समझाइए कि लक्षण स्वतंत्र रूप से वंशागत होते है ?

> या

मेंडल के द्विसंकर संकरण के नियम को समझाइए ।

द्विसंकर संकरण में मेण्डल ने दो जोड़ी विपर्यासी लक्ष्रणों का चयन किया। मेण्डल ने देखा कि गोल-पीले बीज (RRYY) वाले पौधों का संकरण झुर्रीदार हरे बीज (rryy) वाले पौधों से करवाया तो F_{1} पीढ़ी के सभी पौधे गोल व पीले बीज वाले ही थे। F_{1} पीढ़ी के पौधों के बीच स्वपरागण करवाया गया तो देखा कि F_{2} पीढ़ी में चार प्रकार के पौधे उत्पन्न हुए।
गोल पीले बीज वाले - 9
गोल हरे बीज वाले - 3
झुर्रीदार पीले बीज वाले - 3
झुर्रीदार हरे बीज वाले - 1
F_{2} पीढ़ी में लक्षणप्ररूप अनुपात $=9: 3: 3: 1$
प्रयोग से स्पष्ट है कि बीजों के आकृति तथा रंग की वंशानुगत पीढ़ी एक-दूसरे को प्रभावित नहीं करती है। अत: ये लक्ष्ण स्वतंत्र रूप से वंशानुगत होते है।
(25). मनुष्य में लिंग निर्धारण किस प्रकार होता है ? आरेख बनाकर समझाइए।
उत्तर- मनुष्य में 23 जोड़ी गुणसूत्र होते है । जिनमें से 22 जोड़ी अलिंग गुणसूत्र होते है। ज़बकि 23 वां जोड़ा लिंग गुणसूत्र कहलाता है। मनुष्य में लिंग निर्धारण लिंग गुणसूत्रों द्वारा होता है। माता में 23 वें जोड़े के दोनों लिंग गुणसूत्र समान (XX) होते हैं, तथा पिता में एक गुणसूत्र X तथा दूसरा Y होता है, Y गुणसूत्र आकार में सबसे छोटा होता है। अत: स्त्रियों में XX तथा पुरुषों में XY लिंग गुणसूत्र होते हैं। लड़का हो या लड़की अपनी माता से सदैव X गुणसूत्र प्राप्त करते है, अत: बच्चों का लिंग निर्धारण इस बात पर निर्भर करता है कि पिता से किस प्रकार का गुणसूत्र प्राप्त हुआ है। पिता से यदि X गुणसूत्र वंशानुगत होता है तो लड़की पैदा होगी। जबकि Y गुणसूत्र वंशानुगत होता है। तो लड़का पैदा होगा।

अंक भार - 8

निम्न प्रश्नों के उत्तर का सही विकल्प चयन करें।
(1). प्रकाश का वेग सर्वाधिक होता है-
(1) तारपीन में
(2) काँच में
(3) पानी में
(4) निर्वात में
(4)
(2). प्रकाश का वेग न्यूनतम होगा -
(1) हवा में
(2) काँच में
(3) पानी में
(4) निर्वात में
(2)
(3). एक उत्तल दर्पण से सदैव प्रतिबिम्ब बनेगा-
(1) वास्तविक एवं उल्टा
(2) वास्तविक एवं सीधा
(3) आभासी एवं सीधा
(4) आभासी एवं उल्टा
(3)
(4). किसी वस्तु का सीधा तथा आवर्धित प्रतिबिम्ब प्राप्त करने के लिए प्रयुक्त दर्पण तथा लैंस है-
(1) अवतल दर्पण, उत्तल लैंस
(2) अवतल दर्पण, अवतल लैंस
(3) उत्तल दर्पण, अवतल लैंस
(4) उत्तल दर्पण, उत्तल लैंस
(5). दर्पण (गोलीय) का सूत्र हैं-
(1) $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
(2) $\frac{-1}{v}-\frac{1}{u}=\frac{1}{f}$
(3) $\frac{1}{u}-\frac{1}{v}=\frac{1}{f}$
(4) $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
(4)
(6). निर्वात में प्रकाश की चाल होती है।
(1) $2 \times 10^{8} \mathrm{MS}^{-1}$
(2) $3 \times 10^{8} \mathrm{MS}^{-1}$
(3) $3 \times 10^{8} \mathrm{CMS}^{-1}$
(4) $3 \times 10^{11} \mathrm{MS}^{-1}$
(2)
(7). गोलीय दर्पण की वक्रता त्रिज्या (R) तथा फोकस दूरी (f) के मध्य सम्बन्ध है।
(1) $f=2 R$
(2) $f=R / 2$
(3) $f=R$
(4) $R=f / 2$
(8). अवतल लेंस के सामने रखी वस्तु का प्रतिबिम्ब सदैव बनेगा-
(1) आभासी व सीधा
(2) वास्तविक व सीधा
(3) आभासी व उल्टा
(4) वास्तविक व उल्टा
(1)
(9). निम्न में से कौन-सा पदार्थ लेंस बनाने के लिए प्रयुक्त नहीं किया जा सकता ?
(1) जल
(2) काँच
(3) प्लास्टिक
(4) मिट्टी
(4)
(10). कौनसी घटना के कारण पानी में रखी पेंसिल मुड़ी हुई दिखाई देती हैं?
(1) विवर्तन
(2) प्रकीर्णन
(3) परावर्तन
(4) अपवर्तन
(4)
(11). किसी शब्दकोश में पाए गए छोटे अक्षरों को पढ़ते समय आप निम्न में से कौन-सा लैंस पसंद करेंगे ?
(1) 50 CM फोकस दूरी का एक उत्तल लैंस

प्रश्न - 6 = वस्तुनिष्ठ-1, रिक्त स्थान -1 , अति.लघु-2, लघु-2
(2) 50 CM फोकस दूरी का एक अवतल लैंस
(3) 5 CM फोकस दूरी का एक उत्तल लैंस
(4) 5 CM फोकस दूरी का एक अवतल लैंस
(12). किसी दर्पण से आप चाहे कितनी ही दूरी पर खड़े हो, आपका प्रतिबिंब सदैव सीधा प्रतीत होता है। संभवत: दर्पण है -
(1) केवल समतल
(2) केवल अवतल
(3) केवल उत्तल
(4) या तो समतल अथवा उत्तल
(4)
(13). परावर्तन के नियम लागू होते है।
(RBSE2022)
(1) केवल समतल दर्पण के लिए
(2) केवल उत्तल दर्पण के लिए
(3) केवल अवतल दर्पण के लिए
(4) उपरोक्त सभी के लिए
(4)
(14). प्रकाश के परावर्तन की घटना आपतन कोण (i) तथा परावर्तन कोण (r) में सही संबंध होता है-
(1) $i=r$
(2) $i>r$
(3) $i<r$
(4) $i \neq r$
(1)
(15). लैंस के लिए वह बिन्दु जिस पर आपतित किरण बिना मुड़े सीधी निकल जाती है, उस बिन्दु को कहते हैं-
(1) मुख्य फोकस बिन्दु
(2) द्वारक
(3) प्रकाश केन्द्र
(4) वक्रता केन्द्र
(3)
(16). डायप्टर मात्रक होता है -
(1) फोकस दूरी का
(2) आवर्धन का
(3) लैंस शक्ति का
(4) विभेदन क्षमता का
(17). प्रकाश के अपवर्तन की क्रिया में कौनसी भौतिक राशि अपतिवर्तित रहती है -
(1) आवृति
(2) वेग
(3) तरंगदैद्ध्य्य
(4) इनमे से कोई नहीं
(18). जल का अपवर्तनांक होता है-
(1) 1.31
(2) 1.33
(3) 1.36
(4) 2.42
(2)
(19). गोलीय दर्पण के परावर्तन पृष्ठ के केंद्र को कहते है-
(1) वक्रता केंद्र
(2) ध्रुव
(3) मुख्य अक्ष
(4) मुख्य फोकस
(2)
(20). पानी का अपवर्तनांक 1.33 है। पानी में प्रकाश की चाल होगी-
(1) $1.33 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(2) $3 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad$ (RBSE2022)
(3) $2.26 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(4) $2.56 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(21). किसी गोलीय दर्पण तथा किसी पतले गोलीय लैंस दोनों की फोकस दूरियां -15 CM है। दर्पण तथा लैंस संभवत: है ?
(1) दोनों अवतल
(2) दोनों उत्तल
(3) दर्पण अवतल तथा लैंस उत्तल
(4) दर्पण उत्तल तथा लैंस अवतल
(1)
(22). दिये गए चित्र में कोण (X) का मान होगा -

(1) 60°
(2) 90°
(3) 45°
(4) 30°

रिक्त स्थान की पूर्ति करो -
(23). निर्वात में प्रकाश की चाल \qquad होती है।
उत्तर-
$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(24). अभिलंब व आपतित किरण के बीच बनने वाला कोण
...........कहलाता है
उत्तर- आपतन कोण
(25).लेंस की फोकस दूरी हमेशा ऋणात्मक होती है।

उत्तर- अवतल

(26). \qquad .लेंस के द्वारा केवल आभासी प्रतिबिंब बनता है ।
उत्तर- अवतल
(27). प्रकाश किरण का परावर्तक पृष्ठ से टकराकर पुन: उसी माध्यम में प्रकाश किरण का लौटना \qquad कहलाता है
उत्तर- परावर्तन
(28). ऐसा दर्पण जिनका परावर्तक पृष्ठ गोलीय होता है, उन्हें. \qquad दर्पण कहते है।
उत्तर- गोलीय
(29). ऐसा गोलीय दर्पण जिनका परावर्तक पृष्ठ अन्दर की ओर अर्थात गोले के केंद्र की ओर वक्रित होता है। उसे.
दर्पण कहते है।
उत्तर- अवतल
(30). ऐसा गोलीय दर्पण जिनका परावर्तक पृष्ठ बाहर की ओर वक्रिय

होता है. \qquad दर्पण कहते हैं।
उत्तर- उत्तल
(31). लेंस में स्थित वह बिंदु जिसमे होकर जाने वाली प्रकाश की किरण बिना मुड़े सीधी निकलती हैं। लेंस का. \qquad . कहलाती है।
उत्तर- प्रकाशिक केंद्र
(32). लेंस के प्रकाशिक केन्द्र तथा मुख्य फोकस के बीच की दूरी
\qquad ..कहलाती है।
उत्तर- फोकस दूरी
(33). उत्तल लेंस की क्षमता धनात्मक तथा अवतल लेंस की क्षमता
\qquad होती है।
उत्तर- ऋणात्मक
(34). सर्वाधिक अपवर्तनांक. \qquad का होता है।
उत्तर- हीरे का (2.42)
(35). वाहनों के पश्च - दृश्य दर्पण के रूप में. \qquad दर्पण का उपयोग किया जाता है।
उत्तर- उत्तल
(36). वाहनों के अग्रदीप (हैडलाइट) में. \qquad दर्पण का उपयोग होता है ।
(RBSE2022)

उत्तर- अवतल
(37). चहरे का बड़ा प्रतिबिंब देखने के लिए शेविंग दर्पण के रूप में. \qquad को उपयोग में लिया जाता है।
उत्तर- अवतल दर्पण
(38). गोलीये लैंस की वृताकार रूप रेखा का प्रभावी व्यास. \qquad कहलाता है ।
उत्तर- द्वारक
(39). प्रतिबिंब दूरी (v) तथा बिम्ब दूरी (u) का अनुपात लैंस के को व्यक्त करता है ।
(RBSE2022)
उत्तर- आवर्धन
(40). 10 सेमी. वक्रता त्रिज्या वाले अवतल दर्पण की फोकस दूरी
\qquad होती है।
उत्तर- 5 सेमी.
अतिलघुरात्मक प्रश्न
(41). फोकस दूरी को परिभाषित कीजिए ?

उत्तर- किसी लैंस के मुख्य फोकस तथा प्रकाशीय केंद्र के बीच की दूरी को फोकस दूरी कहते है।
(42). प्रकाश का आधुनिक क्वाण्टम सिद्धांत क्या है ?

उत्तर- प्रकाश का आधुनिक क्वाण्टम सिद्धांत प्रकाश के कण संबंधी गुणों तथा तरंग प्रकृति के बीच सामंजस्य स्थापित करता है।
(43). यदि प्रकाश की किरण काँच की पट्टिका पर लंबवत् आपतित होती है तो अपवर्तन कोण का मान कितना होगा ?
उत्तर- अपवर्तन कोण का मान शून्य होगा।
(44). विवर्तन किसे कहते है ?

उत्तर- यदि प्रकाश के पथ में रखी अपारदर्शी वस्तु अत्यंत छोटी हो तो प्रकाश सरल रेखा में चलने के बजाय इसके किनारों पर मुड़ने की प्रवृति को विवर्तन कहते है।
(45). सरल सूक्ष्मदर्शी में कैसा लैंस प्रयुक्त होता है ?

उत्तर- अवतल लैंस
(46). प्रकाश की किरणों को फैलाने वाले लैंस का नाम लिखो।

उत्तर- अवतल लैंस (अपसारी लैंस)
(47). प्रकाश की किरणों को एकत्रित करने वाले लैंस का नाम बताइए

उत्तर- उत्तल लैंस (अभिसारी लैंस)
(48). उस दर्पण का नाम लिखो जिसका प्रयोग दंत चिकित्सक दाँत देखने के लिए करते है ?
उत्तर- अवतल दर्पण
(49). लैंस किसे कहते है ?

उत्तर- दो पृष्ठों से घिरा हुआ कोई पारदर्शी माध्यम, जिसका एक या दोनों पृष्ठ गोलीय हो, लैंस कहलाता है।
(50). आवर्धन के मान में ऋयणात्मक चिह्न से क्या ज्ञात होता है ?

उत्तर- आवर्थन के मान में ऋयणात्मक चिह्न बताता है कि प्रतिबिम्ब वास्तविक है।

लघुरात्मक प्रश्न

(51). लैंस क्षमता किसे कहते है ? लैंस क्षमता का सूत्र लिखिए।

उत्तर- किसी लैंस द्वारा प्रकाश किरणों को अभिसरण (एकत्रित) या अपसरण (फैलाने) करने की मात्रा को उसकी क्षमता के रूप में व्यक्त किया जाता है। इसे P से व्यक्त करते है। (RBSE2018,2022)

लैंस क्षमता का सूत्र $\Rightarrow P=\frac{1}{f_{\text {(मीटर नें) }}}$

उत्तल लैंस की क्षमता धनात्मक तथा अवतल लैंस की क्षमता ऋणात्मक होती है।
(52). परावर्तन के नियम लिखिए।

उत्तर- परावर्तन के दो नियम निम्न है।
(1) आपतन कोण ($\angle i$) तथा परावर्तन कोण ($\angle r)$ बराबर होते है।
(2) आपतित किरण, परावर्तित किरण तथा अभिलम्ब तीनो एक ही तल में होते है।
(53). समतल दर्पण द्वारा बने प्रतिबिम्ब की क्या विशेषताएँ होती है।

उत्तर- (1) समतल दर्पण द्वारा बना प्रतिबिम्ब सदैव आभासी तथा सीधा होता है।
(2) प्रतिबिम्ब का आकार बिम्ब (वस्तु) के बराबर होता है।
(3) प्रतिबिम्ब दर्पण के पीछे उतनी ही दूरी पर बनता है , जितनी

दूरी पर दर्पण के सामने बिम्ब रखा जाता है।
(4) समतल दर्पण में प्रतिबिम्ब पार्श्व परिवर्तित होता है।
(54). प्रकाश के अपवर्तन के नियम लिखिए। (RBSE2022)

उत्तर- प्रकाश के अपवर्तन के निम्न दो नियम है।
(1) प्रथम नियम - आपतित किरण, अपवर्तित किरण तथा दोनों माध्यमों को पृथक करने वाले पृष्ठ के आपतन बिंदु पर अभिलम्ब, तीनो एक ही तल में होते है।
(2) द्वितीय नियम - (स्नेल का नियम) प्रकाश के किसी निश्चित रंग तथा निश्चित माध्यमों के युग्म के लिए आपतन कोण की ज्या $(\operatorname{Sin} \mathrm{i})$ तथा अपवर्तन कोण की ज्या $(\operatorname{Sin} \mathrm{r})$ का अनुपात स्थिर होता है।
$\frac{\operatorname{Sini}}{\operatorname{Sin} r}=$ स्थिरांक
(55). (1) अवतल तथा उत्तल दर्पण में अंतर बताइए।
(2) उत्तल तथा अवतल लैंस में अंतर लिखिए ।

उत्तर- (1)(i) अवतल दर्पण - वह गोलीय दर्पण, जिसका परावर्तक पृष्ठ अंदर की और अर्थात गोले के केंद्र की ओर वक्रित हो, अवतल दर्पण कहलाता है। अवतल दर्पण की फोकस दूरी ऋणात्मक होती है।
(ii) उत्तल दर्पण - वह गोलीय दर्पण , जिसका परावर्तक पृष्ठ बाहर की ओर वक्रित हो , उत्तल दर्पण कहलाता है। उत्तल दर्पण की फोकस दूरी धनात्मक होती है।
(2)(i) उत्तल लैंस - यह बीच में से मोटा तथा किनारो पर से पतला होता है। यह प्रकाश की किरणों को एक बिंदु पर एकत्रित करता है। अतः इसे अभिसारी लैंस भी कहते है। यह दूर दृष्टि दोष को दूर करने में प्रयुक्त होता है।
(ii) अवतल लैंस - यह बीच में से पतला तथा किनारो पर से मोटा होता है। यह प्रकाश की किरणों को फैलाता है। अत: इसे अपसारी लैंस भी कहते है। यह निकट दृष्टि दोष को दूर करने में प्रयुक्त होता है।
(56). अवतल तथा उत्तल दर्पण के उपयोग लिखिए।

उत्तर- अवतल दर्पण के उपयोग -
(i) इसका उपयोग सामान्यत: टॉर्च व वाहनों के अग्रदीपो हैडलाइट में किया जाता है।
(ii) इसका उपयोग चेहरे का बड़ा प्रतिबिम्ब देखने के लिए शेविंग दर्पणों में किया जाता है।
(iii) दंत चिकिस्सक उसका उपयोग मरीजों के दांतो का बड़ा प्रतिबिम्ब देखने के लिए करते है।
(iv) सौर भट्टियों में सूर्य के प्रकाश को केंद्रित करने के लिए बड़े अवतल दर्पणों का उपयोग किया जाता है।
उत्तल दर्पण के उपयोग-उत्तल दर्पणों का उपयोग सामान्यत: वाहनों के पश्च-दृश्य दर्पणों के रूप में किया जाता है। क्योंकि उत्तल दर्पण सदैव सीधा प्रतिबिम्ब बनाते है। इनका दृष्टि क्षेत्र भी अधिक होता है। क्योकि ये बाहर की ओर वक्रित होते है।
(57). गोलीय दर्पणों से संबंधित निम्न को परिभाषित कीजिए।
(i) ध्रुव (ii) मुख्य अक्ष (iii) मुख्य फोकस (iv) फोकस दुरी (v) द्वारक

उत्तर- (i) ध्रुव - गोलीय दर्पण के परावर्तक तल का मध्य बिंदु गोलीय दर्पण का ध्रुव कहलाता है।
(ii) मुख्य अक्ष - गोलीय दर्पण के वक्रता केंद्र (C) तथा ध्रुव
(P) को मिलाने वाली रेखा , मुख्य अक्ष कहलाती है।
(iii) मुख्य फोकस - मुख्य अक्ष पर स्थित वह बिंदु जहाँ पर मुख्य अक्ष के समानान्तर चलने वाला किरण पुंज दर्पण से परावर्तन के बाद मिलता है। या मिलता हुआ प्रतीत होता है, उसे मुख्य फोकस कहते है। इसे F से प्रदर्शित किया जाता है।
(iv) फोकस दूरी - किसी गोलीय दर्पण के ध्रुव तथा मुख्य फोकस के बीच की दुरी को फोकस दूरी कहते है इसे f से प्रदर्शित करते है।
(v) द्वारक - गोलीय दर्पण का परावर्तक पृष्ठ गोलीय होता है। इस पृष्ठ की एक वृताकार सीमा रेखा होता है। गोलीय दर्पण के परावर्तक पृष्ट की इस वृताकार सीमा रेखा होती है। गोलीय दर्पण के परावर्तक पृष्ठ की इस वृताकार सीमा रेखा का व्यास दर्पण का द्वारक कहलाता है।
(58). काँच के आयताकार स्लैव से अपवर्तन का नामांकित चित्र बनाइए ?
(RBSE 2015,2019)
उत्तर-

(59). जब प्रकाश की किरण तिरछा आपतन के साथ प्रवेश करती है तो उनका मार्ग दर्शाते हुए एक किरण आरेख बनाइए। हवा से पानी में।
उत्तर-

(60). लैंस सूत्र तथा आवर्धन से आप क्या समझते है ?

उत्तर- लैंस सूत्र - लैंस में प्रकाशिक केंद्र से वस्तु की दूरी बिम्ब दूरी (u) कहलाती है। लैंस के प्रकाशिक केंद्र से प्रतिबिम्ब की दूरी, प्रतिबिम्ब दूरी (v)कहलाती है। तथा प्रकाशिक केंद्र से मुख्य फोकस के बीच की दूरी, फोकस दूरी (f) कहलाती है। इन तीनों राशियों के बीच एक सम्बन्ध होता है, जिसे लैंस सूत्र कहते है।
निम्न है। $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
आवर्धन

$$
\text { आवर्धन }(\mathrm{m})=\frac{\text { प्रतिबिम्ब की ऊंचाई }\left(\mathrm{h}^{1}\right)}{\text { वस्तु की ऊचाई }(\mathrm{h})}=\frac{v}{u}
$$

(61). अवतल दर्पण द्वारा निम्न स्थितियों में प्रतिबिम्ब बनने के किरण आरेख तथा प्रतिबिम्ब की विशेषताएँ लिखिए। (RBSE2023)
(A) जब वस्तु F पर स्थित हो
(B) जब वस्तु C के पीछे हो

उत्तर- (A) जब वस्तु F पर स्थित हो

प्रतिबिम्ब अनन्त पर, उल्टा, वास्तविक तथा बहुत बड़ा
(B) जब वस्तु C के पीछे हो -

प्रतिबिम्ब - C तथा F के बीच, उल्टा, छोटा तथा वास्तविक बनेगा।
(62). (i) उत्तल तथा अवतल लैंस के उपयोग लिखिए।
(ii) एक अवतल लैंस की फोकस दूरी 40 cm है तो इसकी क्षमता क्या होगी।
उत्तर- (i) उत्तल लैंस आँख के दूर दृष्टि दोष के दूर करने में काम आता है। जबकि अवतल लैंस आँख के निकट दृष्टि दोष के निवारण में काम आता है।
(ii) लैंस क्षमता $(P)=\frac{1}{f_{(\text {मिटर में }}}$

चूंकि अवतल लैंस की फोकस दूरी $f=-40 \mathrm{~cm}$
$P=\frac{100}{-40} \quad=-2.5 \mathrm{D}$
(63). अवतल दर्पण के लिए निम्न के किरण आरेख बनाइए तथा प्रतिबिम्ब की स्थिति तथा प्रकृति को समझाइए।
(A) जब वस्तु अनन्त पर हो
(B) जब वस्तु C पर हो
(C) जब वस्तु C तथा F के बीच हो
(RBSE2018)
(D) जब वस्तु ध्रुव P तथा F के बीच हो

उत्तर- (A) जब वस्तु अनन्त पर हो-

प्रतिबिम्ब मुख्य फोकस पर, अत्यन्त छोटा, वास्तविक तथा उल्टा प्राप्त होता है।
(B) जब वस्तु C पर हो

प्रतिबिम्ब C (वक्रता केंद्र) पर ही, समान आकर का, वास्तविक तथा उल्टा प्रास्त होता है।
(C) जब वस्तु C तथा F के बीच हो -

प्राप्त प्रतिबिम्ब C के पीछे, बड़ा , वास्तविक तथा उल्टा होता है।
(D) जब वस्तु ध्रुव \mathbf{P} तथा F के बीच हो -

प्रतिबिम्ब दर्पण के पीछे बड़ा , आभासी तथा सीधा प्राप्त होता है।
(64). उत्तल दर्पण में निम्न स्थितियो के किरण चित्र बनाइए तथा प्रतिबिम्ब की स्थिति तथा प्रकृति को समझाइए।
(A) जब वस्तु अनन्त पर हो
(B) जब वस्तु अनन्त तथा ध्रुव के बीच हो(RBSE2019)

उत्तर- (A) जब वस्तु अनन्त पर हो -

प्रतिबिम्ब दर्पण के पीछे मुख्य फोकस पर अत्यन्त छोटा, आभासी तथा सीधा प्राप्त होता है।
(B) जब वस्तु अनन्त तथा धुव के बीच हो-

प्रतिबिम्ब दर्पण के पीछे (P) ध्रुव तथा मुख्य फोकस (F) के बीच छोटा , आभासी तथा सीधा प्राप्त होता है।
(65). (A) माध्यम के अपवर्तनांक की परिभाषा लिखिए। (RBsE2019)
(B) एक उत्तल लैंस से प्रतिबिम्ब का बनना दर्शाने का किरण चित्र बनाइए जबकि वस्तु F_{1} तथा $2 F_{1}$ के मध्य स्थित हो।
(A) किन्ही दिये हुए माध्यमों के युग्म के लिए होने वाले दिशा परिवर्तन के विस्तार को अपवर्तनांक कहते है। अपवर्तनांक को विभिन्न माध्यमों में प्रकाश के संचरण की आपेक्षित चाल से संबद्ध किया जा सकता है।
$\mathrm{n}_{21}=\frac{\text { माध्यम } 1 \text { में प्रकाश की चाल }}{\text { माध्यम } 2 \text { में प्रकाश की चाल }}=\frac{v_{1}}{v_{2}}$
हीरे का अपवर्तनांक अधिकतम (2.42) होता है।
(B) जब उत्तल में वस्तु F_{1} तथा $2 F_{1}$ के मध्य हो-

प्रतिबिम्ब $2 \mathrm{~F}_{2}$ के पीछे, उल्टा, वास्तविक तथा बड़ा प्राप्त होता है।
(66). उत्तल लैंस के लिए निम्न स्थितियों के किरण चित्र बनाइए तथा प्रतिबिम्ब की प्रकृति बताइए।
(A) जब वस्तु अनन्त पर हो
(B) जब वस्तु $2 \mathrm{~F}_{1}$ के पीछे हो
(C) जब वस्तु $2 \mathrm{~F}_{1}$ पर हो
(D) जब वस्तु F_{1} पर हो
(E) जब वस्तु F_{1} तथा प्रकाशिक केंद्र (O) के मध्य हो उत्तर- (A) जब वस्तु अनन्त पर हो -

प्रतिबिम्ब F_{2} पर , अत्यन्त छोटा, उल्टा तथा वास्तविक बनता है। (B) जब वस्तु $2 \mathrm{~F}_{1}$ के पीछे हो -

प्रतिबिम्ब F_{2} तथा $2 \mathrm{~F}_{2}(\mathrm{C})$ के बीच , छोटा , उल्टा तथा वास्तविक बनता है।
(C) जब वस्तु $2 \mathrm{~F}_{1}$ पर हो

प्रतिबिम्ब $2 \mathrm{~F}_{2}$ पर (C), समान आकार का , उल्टा तथा वास्तविक बनता है।
(D) जब वस्तु F_{1} पर हो

प्रतिबिम्ब अनन्त पर , बहुत बड़ा, उल्टा तथा वास्तविक बनता है।
(E) जब वस्तु F_{1} तथा प्रकाशिक केंद्र (\mathbf{O}) के मध्य हो-

प्रतिबिम्ब वस्तु की ओर ही, बड़ा , सीधा तथा आभासी प्राप्त होता है।
(67). अवतल लैंस में निम्न स्थितियों के किरण चित्र बनाकर प्रतिबिम्ब की प्रकृति समझाइए।
(A) जब वस्तु अनन्त पर स्थित हो
(B) जब वस्तु अनन्त तथा प्रकाशिक केंद्र के बीच कहीं भी स्थित हो।
(RBSE 2022,2018)
उत्तर- (A) जब वस्तु अनन्त पर स्थित हो-

प्रतिबिम्ब वस्तु की ओर ही, मुख्य फोकस पर, बहुत छोटा सीधा , आभासी प्राप्त होता है।
(B) जब वस्तु अनन्त तथा प्रकाशिक केंद्र के बीच कहीं भी स्थित हो -

प्रतिबिम्ब वस्तु की ओर ही मुख्य फोकस तथा प्रकाशिक केंद्र के बीच छोटा , सीधा तथा आभासी प्रात्त होता है।
(68). (A) आभासी तथा वास्तविक प्रतिबिम्ब में अन्तर लिखिए।
(B) उत्तल तथा अवतल लैंस व दर्पण की फोकस दूरी किसमें

होती है।

उत्तर- वास्तविक प्रतिबिम्ब

1. इसको पर्दे पर प्राप्त कर सकते है।
2. अवतल दर्पण तथा उत्तल लैंस से प्रतिबिम्ब सामान्यत: वास्तविक बनते है।
3. वास्तविक प्रतिबिम्ब सदैव उल्टे बनते है।

आभासी प्रतिबिम्ब-

1. इसको पर्दे पर प्राप्त नहीं कर सकते है।
2. उत्तल लैंस तथा अवतल दर्पण से प्रतिबिम्ब हमेशा आभासी बनते है।
3. आभासी प्रतिबिम्ब सदैव सीधे बनते है।
(B) उत्तल दर्पण तथा लैंस दोनों की फोकस दूरी हमेशा धनात्मक(+ve) होती है। जबकि अवतल दर्पण तथा लैंस दोनों की फोकस दूरी हमेशा ऋणात्मक(-ve) होती है।
(69). आवर्धन से आप क्या समझते है। दर्पण तथा लैंस के आवर्धन सूत्र लिखिए।
उत्तर- प्रतिबिम्ब की ऊंचाई तथा बिम्ब की ऊंचाई के अनुपात को आवर्धन कहते है आवर्धन के मान ने धनात्मक चिह्न बताता है। कि प्रतिबिम्ब आभासी है। तथा ऋणात्मक चिह्न बताता है कि प्रतिबिम्ब वास्तविक है। आवर्धन को m से प्रदर्शित किया जाता है। दर्पण के लिए

आवर्धन $(\mathrm{m})=\frac{h^{1}}{h}=-\frac{v}{u}$
लैंस के लिए $m=\frac{h^{1}}{h}=\frac{v}{u}$
$\mathrm{h}^{1}=$ प्रतिबिम्ब की ऊंचाई
$\mathrm{h}=$ बिम्ब की ऊंचाई
$V=$ प्रतिबिम्ब की ध्रुव या प्रकाशिक केंद्र से दूरी
$\mathbf{u}=$ बिम्ब की ध्रुव या प्रकाशिक केंद्र से दूरी

10. मानव नेत्र तथा रंग बिरंगा संसार

अंक भार - 4

(1). मानव नेत्र अभिनेत्र लैंस की फोकस दूरी को समायोजित करके

विभिन्न दूरियों पर रखी वस्तुओं को फोकसित कर सकता है। ऐसा हो पाने का कारण है -
(1) जरा - दूरदृष्टिता
(2) समंजन
(3) निकट - दृष्टि
(4) दीर्घ - दृष्टि
(2). मानव नेत्र जिस भाग पर किसी वस्तु का प्रतिबिम्ब बनाते है वह है -
(1) कॉर्निया
(2) परितारिका
(3) पुलती
(4) दृष्टिपटल
(4)
(3). सामान्य दृष्टि के वयस्क के लिए सुस्पष्ट दर्शन की अल्पतम दूरी होती है लगभग -
(1) 25 CM
(2) 2.5 CM
(3) 25 M
(4) 2.5 M
(1)
(4). अभिनेत्र लैंस की फोकस दूरी में परिवर्तन किया जाता है।
(1) पुतली द्वारा
(2) दृष्टिपटल द्वारा
(3) पक्ष्माभी द्वारा
(4) परितारिका द्वारा
(3)
(5). मानव नेत्र का कौनसा भाग नेत्र को रंग प्रदान करता है।
(1) नेत्र लैंस
(2) परितारिका
(3) पूतली
(4) दृष्टिपटल
(6). परितारिका की पेशियाँ नियंत्रित करती है ?
(1) प्रकाश नाड़िया
(2) नेत्र लैंस की फोकस दूरी
(3) पुलती का आकार (साइज)
(4) किस्टलीय लैंस की आकृति
(7). बाह्य आघातों से आँख की सुरक्षा करता है ?
(1) कॉर्निया
(2) परितारिका
(3) रक्तक पटल
(4) श्वेत पटल
(8). मानव नेत्र में लैंस पाया जाता है-
(1) अवतल लैंस
(2) उत्तल लैंस
(3) उपरोक्त दोनों
(4) कोई नहीं
(9). रेटिना पर प्रतिबिम्ब बनता है
(1) उल्टा व वास्तविक
(2) आभासी व सीधा
(3) उल्टा व आभासी
(4) वास्तविक व सीधा
(1)
(10). निकट दृष्टि दोष निवारण हेतु किस लैंस का उपयोग होता है ?
(1) उत्तल
(2) अवतल
(3) उपरोक्त दोनों
(4) कोई नहीं
(2)
(11). तारों का टिमटिमाना किस घटना पर आधारित है ?
(1) परावर्तन
(2) वर्ण विक्षेपण
(3) प्रकीर्णन
(4) वायुमण्डलीय अपवर्तन (4)
(12). आकाश का रंग नीला दिखाई देना किस घटना के कारण होता है ?
(1) परावर्तन
(2) अपवर्तन
(3) प्रकीर्णन
(4) ध्रुवण
(13). अभिनेत्र लैंस मोटा होने पर अभिनेत्र लैंस की फोकस दूरी (1) घट जाती है।

प्रश्न - 2 = वस्तुनिष्ठ -1 , दीर्घउत्तरात्मक -1 ,
(2) बढ़ जाती है।
(3) कोई प्रभाव नहीं पड़ता है।
(4) कोई नहीं
(14). प्रकाश के दृश्य स्पेक्ट्रम में वर्णो की संख्या होती है -
(1) 1
(2) 5
(3) 7
(4) 6
(15). प्रकाश नेत्र में एक पतली झिल्ली से होकर प्रवेश करता है , जिसे कहते है -
(1) कॉर्निया
(2) रेटिना
(3) परितारिका
(4) काचाभ द्रव
(16). (1) वर्ण विक्षेपण किसे कहते है ?
(2) स्वच्छ आकाश का रंग नीला क्यों दिखाई देता है ?

उत्तर- (1) जब किसी प्रिज्म पर श्वेत प्रकाश की कोई किरण आपतित की जाती है। तो प्रिज्म से परावर्तन के पश्चात यह किरण सात रंगो में विभक्त हो जाती है, श्वेत प्रकाश की किरण का इस प्रकार सात रंगो में विभक्त होना, प्रकाश का वर्ण विक्षेपण कहलाता है।
(2) वायुमण्डल में धूल तथा जल के असंख्य कण उपलब्ध होते है , जो नीले रंग के प्रकाश का प्रकीर्णन करते है क्योंकि इस रंग का तरंगदैर्ध्य सबसे कम होता है। अतः आकाश का रंग नीला दिखाई देता है।
(17). (1) हमें वर्षा के बाद ही आकाश में इंद्र धनुष क्यों दिखाई देता है ?
(2) मानव नेत्र में कॉर्निया तथा लैंस की क्या भूमिका है ?

उत्तर- (1) वर्षा के बाद आकाश में जल की सूक्ष्म बुँदे रहती है , जल की यह बुँदे प्रिज्म की भांति कार्य करती है। सूर्य के आपतित प्रकाश को ये बुँदे अपवर्तित तथा विक्षेपित करती है, फलस्वरूप हमें सूर्य के विपरीत दिशा में इंद्र धनुष दिखाई देती है।
(2) (i) कॉर्निया - नेत्र के अग्र भाग पर पारदर्शी झिल्ली होती है। नेत्र में प्रवेश करने वाले प्रकाश का अधिकतम अपवर्तन यहीं हो जाता है।
(ii) लैंस - नेत्र में उत्तल लैंस होता हो जो प्रकाश को रेटिना पर फोकसित करता है।
(18). (1) टिंडल प्रभाव किसे कहते है ?
(2) तारे टिमटिमाते क्यों प्रतीत होते है समझाइए।
(1) किसी कोलायडी विलयन में उपस्थित कणों द्वारा प्रकाश का प्रकीर्णन होने की परिघटना टिंडल प्रभाव कहलाती है।
(2) तारों के प्रकाश के वायुमण्डलीय अपवर्तन के कारण ही तारे टिमटिमाते है। तारे बहुत दूर है, इसलिए वे प्रकाश के बिंदु स्त्रोत के निकट है। तारों से आने वाली प्रकाश किरणों का पथ थोड़ा - थोड़ा बदलता रहता है। इसलिए तारे की आभासी स्थिति विचलित होती रहती है। तथा आँखो में प्रवेश करने वाले तारों के प्रकाश की मात्रा झिलमिलाती रहती है। जिसके कारण तारे टिमटिमाते प्रतीत होते है।
(19). (1) प्रिज्म कोण किसे कहते है ?
(2) निकट दृष्टि दोष का कारण एवं निवारण लिखिए

उत्तर- (1) प्रिज्म के दो पार्श्व फलकों के बीच के कोण को प्रिज्म कोण कहते है।
(2) निकट दृष्टि दोष में व्यक्ति को निकट की वस्तु तो स्पष्ट दिखाई देती है। लेकिन दूर की वस्तु स्पष्ट दिखाई नहीं देती है।
कारण - (i) लैंस की वक्रता का अधिक होना।
(ii) नेत्र गोलक का लंबा होना।

निवारण - अवतल लैंस का उपयोग।
(20). (1) मानव नेत्र का दूरतम बिंदु कितना होता है ?
(2) दूर दृष्टि दोष किसे कहते है ? दोष के कारण व निवारण

लिखिए।

उत्तर- (1) अनंत
(2) दूर दृष्टि दोष में व्यक्ति को दूर की वस्तुएँ तो स्पष्ट दिखाई

देती है। लेकिन नजदिक की वस्तुएँ स्पष्ट दिखाई नहीं देती है।
कारण - (i) लैंस की फोकस दूरी का अधिक होना।
(ii) नेत्र गोलक का छोटा होना।

निवारण - उत्तल लैंस का उपयोग।
(21). (1) समंजन क्षमता किसे कहते है ?
(2) जरा - दूर दृष्टिता दोष क्या है इसका निवारण भी लिखिए

उत्तर- (1) अभिनेत्र लैंस की वह क्षमता जिसके कारण वह अपनी फोकस दूरी को समायोजित कर लेता है , समंजन क्षमता कहलाती है।
(2) आयु में वृद्धि के साथ - साथ नेत्र की समंजन क्षमता घट जाती है। जिससे व्यक्तियों का निकटतम बिंदु दूर हट जाता है। जिससे पास की वस्तुएँ देखने में कठिनाई हो जाती है। निवारण - द्विफोकसी लैंस का उपयोग।
(22). (1) विचलन कोण क्या है ?
(2) काँच के प्रिज्म के माध्यम से श्वेत प्रकाश के विक्षेपण को समझाइए।
उत्तर- (1) प्रिज्म की विशेष आवृति के कारण निर्यत किरण आपतित किरण की दिशा में एक कोण बनाती है। इस कोण को विचलन कोण कहते है।
(2) प्रकाश के अवयवी वर्णो के विभाजन को विक्षेपण कहते है। श्वेत प्रकाश प्रिज्म द्वारा इसके सात अवयवी वर्णो में विक्षेपित होता है। किसी प्रिज्म से गुजरने के पश्चात प्रकाश के वर्ण आपतित किरण के सापेक्ष अलग - अलग कोणों पर झुकते है। लाल प्रकाश सबसे कम तथा बैंगनी प्रकाश सबसे ज्यादा झुकता है। इसलिए प्रत्येक वर्ण की किरणें अलग - अलग पथों के अनुदिश निर्गत होती है। तथा सुस्पष्ट दिखाई देती है। वर्णो का यह बेण्ड हमे स्पेक्ट्रम के रूप में दिखाई देता है। सदृश्य स्पेक्ट्रम श्वेत प्रकाश कहलाता है।
(23). (1) दृष्टि परास क्या है ?
(2) ग्रह क्यों नहीं टिमटिमाते है ?

उत्तर- (1) आँख के निकट दृष्टि बिंदु तथा दूर दृष्टि बिंदु के बीच को दूरी को दृष्टि परास कहते है।
(2) ग्रह तारों की अपेक्षा पृथ्वी के बहुत निकट है , इसलिए उन्हें विस्तृत स्त्रोत की भांति माना जा सकता है। यदि हम ग्रह को बिंदु साइज के अनेक प्रकाश स्त्रोतों का संग्रह मान ले तो सभी बिंदु -

अंक भार - 7

प्रश्न - 4 = वस्तुनिष्ठ- 2 , रिक्त स्थान -1 , निंब -1

निम्न प्रश्नों के उत्तर का सही विकल्प चयन करें-
(1). यदि किसी परिपथ में 1 कूलॉम आवेश को प्रवाहित करने में 1 जूल कार्य करना पड़ता है , तो दो बिन्दुओ के बीच विभवान्तर होगा -
(1) 1 वोल्ट
(2) 2 वोल्ट
(3) 3 वोल्ट
(4) 4 वोल्ट
(1)
(2). चालक तार का प्रतिरोध निम्न में से किस पर निर्भर नहीं करता है-
(1) चालक तार की लम्बाई पर
(2) अनुप्रस्थ काट क्षेत्रफल पर
(3) उपर्युक्त दोनों
(4) उपर्युक्त में से कोई नहीं
(4)
(3). विद्युत आवेश का S.I.मात्रक होता है-
(1) कूलॉम
(2) वोल्ट
(3) ऐम्पियर
(4) ओम
(1)
(4). निम्न में से कौन-सा संबंध सत्य है ?
(1) $V=I / R$
(2) $V=R / I$
(3) $V=I R$
(4) $V=I R^{2}$
(3)
(5). वोल्ट / ऐम्पियर प्रदर्शित करता है -
(1) ऐम्पियर
(2) वोल्ट
(3) ओम
(4) वाट
(3)
(6). विद्युत बल्ब का तन्तु किस धातु का बना होता है ?
(1) लोहा
(2) टंगस्टन
(3) ताँबा
(4) सोना
(2)
(7). $100 \mathrm{~W}-220 \mathrm{~V}$ विद्युत बल्ब के तंतु का प्रतिरोध क्या होगा ?
(1) 900 ओम
(2) 484 ओम
(3) 220 ओम
(4) 100 ओम
(2)
$\because R=\frac{V^{2}}{P}=\frac{220 \times 220}{100}=484$ ओम
(8). किसी विद्युत परिपथ में विद्युत धारा की दिशा को माना जाता है-
(1) इलेक्ट्रॉनों के प्रवाह की विपरीत दिशा को
(2) इलेक्ट्रॉनों के प्रवाह की दिशा को
(3) इलेक्ट्रॉनों के प्रवाह के लंबवत दिशा को
(4) किसी भी दिशा को
(1)
(9). सर्वाधिक चालकता वाली धातु है-
(1) लोहा
(2) टंगस्टन
(3) ताँबा
(4) चांदी (सिल्वर)
(4)
(10). 1,2 और 3 ओम के 3 प्रतिरोधों को श्रेणी क्रम में जोड़ने पर समतुल्य प्रतिरोध होगा -
(1) 1 ओम
(2) 3 ओम
(3) 6 ओम
(4) 2 ओम
(3)
(11). ऊर्जा का S.I.मात्रक होता हैं ?
(1) केलोरी
(2) जूल
(3) ताप
(4) इनमें से कोई नहीं
(2)
(12). विद्युत ऊर्जा का व्यवसायिक मात्रक क्या है ?
(1) किलो - वाट घण्टा
(2) वाट
(3) वाट - घण्टा
(4) जूल/घण्टा
(13). विभव या विभवान्तर का S.I. मात्रक क्या होता है ?
(1) जूल
(2) वाट
(3) एम्पियर
(4) वोल्ट

रिक्त स्थान की पूर्ति करो -
(14). वोल्ट मीटर को सदैव परिपथ में. \qquad में संयोजित किया जाता है।
उत्तर- समान्तर क्रम
(15). एक कुलॉम आवेश में \qquad इलेक्ट्रोन होते है। उत्तर-
(16). 1 यूनिट में. \qquad जूल होते है। उत्तर-
3.6×10^{6}
(17). विशिष्ट प्रतिरोध या प्रतिरोधकता का मात्रक. \qquad होता है। उत्तर- ओम-मीटर
(18).

उपर्युक्त चित्र मे A एवं B के मध्य तुल्य प्रतिरोध. \qquad .होगा। उत्तर- 2
(19). विद्युत धारा के सतत तथा बंद पथ को. \qquad कहते हैं।
उत्तर- विद्युत परिपथ
(20). किसी विद्युत बल्ब के तंतु में से 0.5 A विद्युत धारा 600° सेकण्ड तक प्रवाहित की जाए तो परिपथ में प्रवाहीत विद्युत आवेश. \qquad .कुलाम होगा।
उत्तर- 300
(21). एक इलेक्ट्रॉन पर \qquad आवेश होता है।
उत्तर- 1.6×10^{-19} कूलॉम
(22). 1 कूलॉम आवेश किसी परिपथ में. तक प्रवाहित हो तो परिपथ में धारा 1 एम्पीयर होगी।
उत्तर- 1 सैकण्ड
(23). एक ही साइज के चालकों में वह चालक जिसका........ कम

होता है, अधिक अच्छा चालक होता है।
उत्तर- प्रतिरोध

भौतिक राशि	मात्रक या इकाई
विद्युत धारा	ऐम्पियर
विभवान्तर	वोल्ट
विद्युत शक्ति	वाट
विशिष्ट प्रतिरोध या प्रतिरोधकता	ओम-मीटर
विद्युत ऊर्जा का व्यवसायिक मात्रक	यूनिट या kwh
प्रतिरोध	ओम (Ω)
आवेश	कुलाम (C)
कार्य	जूल (J)
समय	सेकंड (S)

(1). (1) प्रतिरोध किसे कहते है ?
(2) किसी चालक तार का प्रतिरोध किन-किन बातों पर निर्भर करता है ?
उत्तर- (1) किसी पदार्थ का वह गुंण जो अपने में से प्रवाहित होने वाले आवेश के प्रवाह का विरोध करता है। उस गुण को प्रतिरोध कहते
है, प्रतिरोध का SI मात्रक ओम (Ω) है।
(2) (i) चालक की लम्बाई (l) पर ।
(ii) चालक तार के अनुप्रस्थ काट के क्षेत्रफल(A) पर ।
(iii) चालक तार की प्रकृति पर ।
(2). (1) विद्युत परिपथ किसे कहते है।
(2) किसी विद्युत बल्ब के तंतु में से 0.5 A विद्युत धारा 10 मिनट के समय के लिए प्रवाहित की जाती है। विद्युत परिपथ में प्रवाहित विद्युत आवेश का परिमाण ज्ञात कीजिए।
उत्तर- (1) किसी विद्युत धारा के सतत या बन्द पथ को विद्युत परिपथ कहते है।
(2) दिया गया है
$I=0 \cdot 5 \mathrm{~A}$
$t=10$ मिनट $_{(10 \text { Aीन } \times 60=600 \mathrm{sec})}$
\because विद्युत आवेश $Q=I t$

$$
\begin{aligned}
& =0 \cdot 5 A \times 600 \mathrm{~s} \\
& =300 \mathrm{C}
\end{aligned}
$$

(3). (1) एक ऐम्पियर की परिभाषा दीजिए।
(2) दिए गए पदार्थ के किसी l लंबाई तथा \mathbf{A} मोटाई के तार का प्रतिरोध 4Ω है। इसी पदार्थ के किसी अन्य तार का प्रतिरोध क्या होगा जिसकी लंबाई $\frac{1}{2}$ तथा मोटाई 2 A है ?
उत्तर- (1) यदि किसी विद्युत परिपथ के किसी बिन्दु से एक सेकण्ड में एक कूलॉम आवेश प्रवाहित होता है उस परिपथ में विद्युत धारा एक ऐम्पियर होगी।
$1 A=\frac{1 C}{1 S}$
(2) प्रथम के लिए तार
$R_{1}=P \frac{l}{A}$
$=4 \Omega$
द्वितीय के लिए तार
$R_{2}=p \frac{\frac{1}{2}}{2 A}$
$=\frac{1}{4} \cdot P \frac{l}{A}$
$=\frac{1}{4} R_{1}$
$=\frac{1}{4} \times 4 \Omega$
$=1 \Omega$
अत: तार का नया प्रतिरोध 1Ω है।
(4). (1) एक वोल्ट को परिभाषित कीजिए।
(2) दिये गये परिपथ का कुल प्रतिरोध व कुल धारा ज्ञात कीजिए?

उत्तर- (1) किसी विद्युत परिपथ में एक कूलॉम आवेश को एक बिन्दु से दूसरे बिन्दु तक ले जाने में किया गया कार्य एक जुल हो तो दूसरे बिन्दु का विभवान्तर एक वोल्ट होंगा।

$$
1 v=\frac{1 j}{1 C}
$$

(2) परिपथ में 4Ω के 2 प्रतिरोध समान्तर क्रम में है-

तो $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \begin{aligned} & R_{1}=4 \\ & R_{2}=4\end{aligned}$
$\frac{1}{R}=\frac{1}{4}+\frac{1}{4}$
$\frac{1}{R}=\frac{1+1}{4}$
$\frac{1}{R}=\frac{2}{4} \quad$ या $\quad R=2 \Omega$
अब 2Ω के तीन प्रतिरोध श्रेणीक्रम में है-
$R=R_{1}+R_{2}+R_{3}$
$R=2+2+2$
अतः कुल प्रतिरोध 6Ω होगा।
परिपथ में प्रवाहित धारा
$V=I R \quad V=12 V \quad R=6 \Omega$
$I=\frac{V}{R}=\frac{12}{6}$
$1 \Omega=\frac{1 V}{1 A}$
अत: कुल धारा $=2 A$ होगी।
(5). (1) 1 ओम को परिभाषित कीजिए।
(2) किसी 4Ω प्रतिरोधक से प्रति सेकंड 100 j ऊष्मा उत्पन्न हो रही है। प्रतिरोधक के सिरों पर विभवान्तर ज्ञात कीजिए।
उत्तर- यदि किसी चालक तार में एक ऐम्पियर धारा प्रवाहित करने पर उसके सिरों पर उत्पन्न विभवान्तर एक वोल्ट हो तो उस तार का प्रतिरोध ओम एक होगा।

$$
1 \Omega=\frac{1 V}{1 A}
$$

(2) दिया गया है-
$H=100 J, R=4 \Omega, t=1 s, V=$?
$H=I^{2} R t$
$I^{2}=\frac{H}{R t}$
$I=\sqrt{\frac{H}{R t}}$
$I=\sqrt{\frac{100}{4 \times 1}}$
$I=5 A$
विभवान्तर ज्ञात करने के लिए
$\therefore V=I R$
$V=5 \times 4$
$=20 \mathrm{~V}$
अतः प्रतिरोधक के सिरों पर विभवान्तर 20 V होगा।
(6). (1) अमीटर को विद्युत परिपथ में कौनसे क्रम में लगाया जाता है ?
(2) 400 W अनुमत का कोई विद्युत रेफ्रिजरेटर 8 घंटे /दिन चलाया जाता है। 3.00 रुपये प्रति kwh की दर से इसे 30 दिन तक चलाने के लिए ऊर्जा का मूल्य क्या है ?
उत्तर- (1) अमीटर को सदैव विद्युत परिपथ में श्रेणीक्रम में लगाया जाता है।
(2) 30 दिन में रेफ्रिजरेटर द्वारा उपयुक्त कुल ऊर्जा
$400 \mathrm{~W} \times 8.0$ घंटे /दिन $\times 30$ दिन $=96000 \mathrm{~Wh}$

$$
=96 \mathrm{kwh}
$$

इस प्रकार 30 दिन तक रेफ्रि जरेटर को चलाने में उपयुक्त कुल ऊर्जा का मूल्य
$96 \mathrm{kwh} \times 3.00 \mathrm{kwh}$ रुपये $=288.00$ रुपये
(7). (1) धारा नियंत्रक किसे कहते हैं ?
(2) श्रेणी क्रम में संयोजित तीन प्रतिरोधकों $\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}$ के तुल्य प्रतिरोध ज्ञात करने के सूत्र की व्युत्पत्ति कीजिए।
उत्तर- किसी विद्युत परिपथ में परिपथ के प्रतिरोध को परिवर्तित करने के लिए प्राय: एक युक्ति का उपयोग करते है, जिसे धारा नियंत्रक कहते हैं।
(2) किसी परिपथ में विद्युत धारा (I) प्रवाहित होने पर श्रेणीक्रम में लगे प्रतिरोधकों $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ पर
क्रमश: $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ विभवान्तर उत्पन्न होता है।

कुल विभवान्तर $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$. समी. 1 ओम के नियमानुसार $V=I R$

$$
\begin{gathered}
V_{1}=I R_{1} \\
V_{2}=I R_{2} \\
V_{3}=I R_{3}
\end{gathered}
$$

V, V_{1}, V_{2}, V_{3}, का मान समीकरण -1 में रखने पर
$V=V_{1}+V_{2}+V_{3}$
$I R=I R_{1}+I R_{2}+I R_{3}$
तो
$R=R_{1}+R_{2}+R_{3}$
अतः श्रेणीक्रम में संयोजित प्रतिबोधको का तुल्य प्रतिरोध R_{1}, R_{2}, R_{3} के योग के बराबर होता हैं।
(8). (1) ओम के नियम से संबधित दिए गए परिपथ में युक्ति X

व Y का मान लिखिए।

(2) प्रतिरोधों के समान्तर क्रम संयोजन को समझाइए।

उत्तर- (1) X - अमीटर

$$
\mathrm{Y}=\text { वोल्टमीटर }
$$

(2)

माना तीन प्रतिरोध R_{1}, R_{2}, R_{3} समांतर क्रम / पार्श्र क्रम में संयोजित है।
इनमें प्रवाहितधारा क्रमश: $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ है तथा विभवांतर V हो तो कुल विद्युत धारा -
$I=I_{1}+I_{2}+I_{3} \quad$ (ओम के नियम वो में $I=\frac{V}{R}$)
$\frac{V}{R}=\frac{V}{R_{1}}+\frac{V}{R_{2}}+\frac{V}{R_{3}}$
$\frac{V}{R}=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)$
$\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
यहा R_{p} समांतर क्रम संयोजन का तुल्य प्रतिरोध है
यदि n प्रतिरोध आपस में समांतर क्रम में जुड़े हुए हो तो तुल्य प्रतिरोध
$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+$. \qquad
(9). (1) फ्यूज किस मिश्रधातु का बना होता है।
(2) किसी चालक के सिरो का विभवान्तर किन बातों पर निर्भर करता है ? आवश्यक सूत्र देकर स्पष्ट कीजिए। अथवा
ओम का नियम लिखिए।
उत्तर- (1) फ्यूज लेड तथा टिन से बनी मिश्रधातु से बना होता है ?
(2)ओम के नियमानुसार, किसी चालक के सिरों के बीच विभवान्तर
$V=I \cdot R$
जहाँ $I=$ चालक में प्रवाहित धारा
$R=$ चालक का प्रतिरोध
अत: चालक के सिरों का विभवान्तर V चालक में प्रवाहित धारा I व प्रतिरोध R दोनों पर निर्भर करता है तथा यह दोनों के अनुक्रमानुपाती है।
(10). (1) विद्युत विभवान्तर किसे कहते है।
(2) निम्न का मिलान करो -
(अ) एमीटर
(i) $V=\frac{W}{Q}$
(ब) वोल्टमीटर
(ii) $V=I R$
(स) विभवान्तर
(iii) $P=\frac{R A}{l}$
(द) ओम का नियम
(iv) विभवान्तर मापक
(य) प्रतिरोधकता
(v) धारा मापक
(र) विद्युत शक्ति
(vi) $P=V I$

उत्तर- (1) किसी विद्युत परिपथ में एकांक धनावेश को एक बिंदु से दूसरे बिंदु तक ले जाने में किया गया कार्य उन दोनों बिंदुओं के बीच का विभवान्तर कहलाता है।
(2) (अ) $=(\mathrm{V})$
(ब) $=$ (iv)
(स) $=(\mathrm{i})$
(द) $=(\mathrm{ii})$,
(य) $=$ (iii)
(र) $=(\mathrm{vi})$
(11). (1) 6 V विभवांतर के दो बिंदुओं के बीच 2 C आवेश को ले जाने में कितना कार्य किया जाता है ?
(2) निम्न का मिलान करो-

विषय वस्तु

(अ) धारा
(ब) विभवान्तर
(स) प्रतिरोध
(द) विद्युत शक्ति
(य) ऊर्जा का व्यापारिक मात्रक
(र) प्रतिरोधकता

मात्रक

(i) किलोवाट घंटा (kwh)
(ii) ओम मीटर (Ωm)
(iii) एम्पियर (A)
(iv) वोल्ट (V)
(v) वॉट (W)
(vi) ओम (Ω)

उत्तर- (1) विभवांतर $V=\frac{W}{Q}$

$$
\begin{aligned}
W & =V \times Q \\
& =6 \times 2 \\
& =12 J
\end{aligned}
$$

(2) $($ अ $)=(\mathrm{iii})$
(ब) $=$ (iv)
(स) $=(\mathrm{vi})$
(द) $=(\mathrm{v})$
(य) $=(\mathrm{i})$
(र) $=$ (ii)
(12). (1) विद्युत शक्ति किसे कहते है ?
(2) 24Ω की नाइक्रोम की प्रतिरोध कुण्डली के 12 वोल्ट की बैटरी से जोड़ते है। एवं इसमें 10 मिनट तक विद्युत धारा प्रवाहित की जाती है। कुण्डली में उत्पन्न ऊष्मा का मान ज्ञात कीजिये ।
उत्तर- (1) किसी विद्युत परिपथ में धारा प्रवाहित करने पर प्रति सैकण्ड में किया गया कार्य विद्युत शक्ति कहलाती है।
(2) दिया गया है -

$$
\begin{aligned}
& R=24 \Omega \\
& V=12 \mathrm{~V} \\
& t=10 \mathrm{~min}=600 \mathrm{~s}
\end{aligned}
$$

जूल के तापन नियम से $H=I^{2} R t$

$$
V=I R \text { से } I=\frac{V}{R}
$$

उत्पन्न ऊष्मा

$$
\begin{aligned}
& H=\frac{V^{2}}{R} t \\
& =\frac{(12)^{2}}{24} \times 600 \\
& =3600 \mathrm{~J}
\end{aligned}
$$

(13). (1) विद्युत धारा किसे कहते है।
(2) जूल के तापन नियम को समझाइए

उत्तर- (1) किसी विद्युत चालक में आवेशों के प्रवाह की दर विद्युत धारा कहलाती है।

$$
\text { विद्युत धारा } I=\frac{\text { आवेश } \mathrm{Q}}{\text { समय } \mathrm{t}}
$$

(2) यदि किसी तार में t समय में Q आवेश का प्रवाह हो तथा उत्पन्न विभवान्तर V हो, तो किया गया कार्य

$$
W=V Q
$$

$$
(Q=I t)
$$

$W=V I t$
निवेशित ऊर्जा VIt ऊष्मा ऊर्जा में परिणित होगी अतः उत्पन्न ऊष्मा

$$
\begin{aligned}
& H=V I t \\
& (V=I R \text { से }) \\
& H=I R I t \\
& H=I^{2} R t \quad \text { यही जूल का तापन नियम है। }
\end{aligned}
$$

उपरोक्त सूत्र से स्पष्ट है कि उत्प्पन्न ऊष्मा -

1. धारा के वर्ग के समानुपाती। $H \propto I^{2}$
2. प्रतिरोध के समानुपाती होती है। $H \propto R$
3. समय के समानुपाती होती है। $H \propto t$
(14). (1) प्रतिरोधकता किसे कहते है ?
(2) 1 ओम, 2 ओम तथा 3 ओम के प्रतिरोध की 6 V बैटरी से श्रेणी क्रम में जुड़े हुए है , परिपथ का कुल प्रतिरोध तथा प्रवाहित धारा का मान ज्ञात कीजिए ।
उत्तर- (1) हम जानते है $R \propto \frac{l}{A}$

$$
\text { तो } P=R \frac{A}{l}
$$

यहां P चालक की प्रतिरोधकता है।
अर्थात मीटर लम्बा तथा 1 मीटर अनुप्रस्थ काट वाले तार का प्रतिरोध प्रतिरोधकता कहलाती है।
(2) दिया हुआ है
$R_{1}=1 \Omega \quad R_{2}=2 \Omega \quad R_{3}=3 \Omega \quad V=6 V$
तो परिपथ में कुल प्रतिरोध
$R=R_{1}+R_{2}+R_{3}$
$=1+2+3$
$=6 \Omega$
ओम के नियमानुसार परिपथ में प्रवाहित कुल धारा
$I=\frac{V}{R}$
$=\frac{6}{6}$
$=1 \mathrm{~A}$
अत: परिपथ में कुल प्रतिरोध $=6 \Omega$
तथा कुल धारा $=1 A$ है।
(15). (1) फ्यूज को विद्युत परिपथ में किस क्रम में जोड़ा जाता है ?
(2) किसी विद्युत परिपथ में 5 ऐम्पियर की धारा प्रवाहित करने पर 20 वोल्ट का विभवान्तर उत्पन्न होता है , परिपथ का प्रतिरोध ज्ञात कीजिए
उत्तर- (1) श्रेणी क्रम
(2) दिया हुआ है
$I=5 A$
$V=20 V$
$R=$?
ओम के नियामनुसार
$V=I R$
$R=\frac{V}{I}$
$=\frac{20}{5}$
$R=4 \Omega$
अतः परिपथ का प्रतिरोध 4Ω होगा।

अंक भार - 6

प्रश्न-4 = वस्तुनिष्ठ- 1 , अतिलघु -1 , लघु -2 ,
(1). विद्युत चुम्बक बनाया जाता है-
(1) कठोर लोहे का
(2) नर्म लोहे का
(3) किसी भी प्रकार के लोहे का बनाया जा सकता है।
(4) उपरोक्त में से कोई नहीं
(2)
(2). चित्र में दर्शाए अनुसार कोई इलेक्ट्रॉन किसी चुंबकीय क्षेत्र में क्षेत्र के लंबवत प्रवेश करता है , तो इलेक्ट्रॉन पर आरोपित बल की दिशा क्या होगी।

(1) दांई ओर
(2) बांई ओर
(3) कागज के बाहर की ओर आते हुए।
(4) कागज के भीतर की ओर जाते हुए।
(3). चुम्बकीय क्षेत्र की तीव्रता का मात्रक क्या है ?
(1) डेसीबल
(2) वेबर
(3) न्यूटन
(4) ऑर्स्टेड
(4)
(4). विद्युन्मय तार होता है ?
(1) लाल रंग का
(2) काले रंग का
(3) हरे रंग का
(4) नीले रंग का
(1)
(5). पश्चिम की ओर प्रक्षेपित कोई धनावेशित कण किसी चुम्बकीय क्षेत्र द्वारा उत्तर की ओर विक्षेपित हो जाता है चुम्बकीय क्षेत्र की दिशा क्या है ?
(1) उपरिमुखी
(2) अधोमुख्वी
(3) दक्षिण की ओर
(4) पूर्व की ओर
(1)
(6). किसी विद्युत धारावाही सीधी लम्बी परिनालिका के भीतर चुम्बकीय क्षेत्र-
(1) शून्य होता है।
(2) इसके सिरे की ओर आने पर बढ़ता है।
(3) सभी बिन्दुओ पर समान होता है।
(4) इसके सिरे की ओर जाने पर घटता है।
(3)
(7). हमारे देश में विद्युन्मय तार तथा उदासीन तारों के मध्य विभवान्तर उत्तरहोता है।
(1) 260 V
(2) 220 V
(3) 200 V
(4) 240 V
(8). लघुपथन के समय परिपथ में विद्युत धारा का मान -
(1) बहुत कम हो जाता है।
(2) परिवर्तित नहीं होता।
(3) बहुत अधिक बढ़ जाता है।
(4) निरन्नर परिवर्तित होता है।
(3)
(9). निम्नलिखित में से कौन किसी लंबे विद्युत धारावाही तार के निकट चुंबकीय क्षेत्र का सही वर्णन करता है ?
(1) चुम्बकिय क्षेत्र की क्षेत्र रेखाएँ तार के लंबवत होती है।
(2) चुम्बकिय क्षेत्र की क्षेत्र रेखाएँ तार के समान्तर होती है।
(3) चुम्बकिय क्षेत्र की क्षेत्र रेखाएँ अरीय होता है। जिनका उद्भव तार से होता है।
(4) चुम्बकिय क्षेत्र की संकेन्द्री क्षेत्र रेखाओं का केंद्र तार होता है।
(10). परिनालिका के भीतर चुम्बकिय क्षेत्र की दिशा होती है।
(1) उत्तर से दक्षिण
(2) दक्षिण से उत्तर
(3) पूर्व से पश्चिम
(4) पश्चिम से पूर्व
(11). जब किसी चालक तार से विद्युत धारा प्रवाहित होती है तो गतिशील कण में उपस्थित होते है ?
(1) इलेक्ट्रॉन
(2) परमाणु
(3) आयन
(4) प्रोटॉन
(1)
(12). विद्युत धारा की दिशा इलेक्ट्रॉनों की दिशा के होती है ?
(1) समान
(2) लम्बवत
(3) विपरीत
(4) उपर्युक्त सभी

अतिलघुत्तरातमक प्रश्न
(1). MRI का पूरा नाम लिखिए -

उत्तर- Magnetic Resonance Imaging (चुम्बकीय अनुनाद प्रतिबिंबन)
(2). एक छड़ चुम्बक के लिए चुम्बकीय रेखाए प्रदर्शित कीजिए । उत्तर-

(3). किसी विद्युत धारावाही परिनालिका के भीतर एवं उसके चारों ओर चुम्बकीय क्षेत्र रेखाओं को प्रदर्शित करने के लिए चित्र बनाइए।

(4). किसी विद्युत धारावाही सीधे चालक तार के चारों ओर के चुम्बकीय क्षेत्र की क्षेत्र रेखाओं को निरूपित करता सकेंद्र वृतों का पैटर्न बनाइए।

उत्तर-

(5). विद्युत धारावाही पाश के कारण उत्पन्न चुम्बकीय क्षेत्र रेखाएं खींचिए।
उत्तर-

(6). किसी विद्युत धारावाही वृताकार कुण्डली द्वारा उत्प्पन चुम्बकीय क्षेत्र रेखाएँ खींचिए।
उत्तर-

(7). दो चुम्बकीय क्षेत्र रेखाए एक - दूसरे को प्रतिच्छेद क्यों नहीं करती है।
उत्तर- प्रतिच्छेद बिंदु पर दिकसूचक सूई रखने पर दिकसूचक सूई केवल एक ही दिशा की ओर संकेत करती है।
(8). विद्युत परपिथो एंव साधित्रों में सामान्यतया उपयोग होने वाले दो सुरक्षा उपायों के नाम लिखिए।
उत्तर-

1. विद्युत फ्यूज
2. भू - सम्पर्क तार
(9). परिनालिका क्या है ?

उत्तर- पास - पास लिपटे विद्युत रोधी तांबे के तार के बेलन की आकृति की अनेक फेरों वाली कुण्डली को परिनालिका कहते है।
(10). चुम्बकीय क्षेत्र में धारावाही चालक पर लगने वाले बल कि दिशा किस नियम से जानी जा सकती है ?
उत्तर- फ्लेमिंग के वामहस्त से ।
(11). प्रेरित विद्युत धारा की दिशा किस नियम से जानी जा सकती है ?
उत्तर- फ्लेमिंग के दक्षिण हस्त नियम से ।
(12). लघुपथन / शार्ट सर्किट कैसे होता है ?

उत्तर- विद्युन्मय तथा उदासीन तारों के सीधे सम्पर्क में आने से।
(13). किसी चालक तार में विद्युत धारा प्रवाहित करने पर क्या होगा ?

उत्तर- तार के चारों और चुम्बकीय क्षेत्र उत्पन्न हो जाता है ।
(14). चुम्बकीय क्षेत्र से क्या अभिप्राय है।

उत्तर- किसी चुम्बक के चारो ओर का वह क्षेत्र जिसमें उसके बल का संसूचन किया जा सकता है। उस चुम्बक का चुम्बकीय क्षेत्र कहलाता है।
(15). किसी विद्युत धारावाही चालक से संबद्ध चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए किस नियम का उपयोग किया जाता है ?
उत्तर- दक्षिण हस्त अंगुष्ठ नियम।
(16). चुम्बकीय क्षेत्र में किसी विद्युत धारावाही चालक पर लगने वाले बल का चित्र बनाइए।
उत्तर-

लघुत्तरात्मक प्रश्न
(1). चुम्बकीय क्षेत्र में किसी धारावाही विद्युत चालक द्वारा लगने वाले बल की दिशा निर्धारित करने का नियम लिखिए। अथवा
फ्लेमिंग का वाम हस्त नियम लिखिए।
उत्तर- यदि हम अपने बाएँ हाथ की तर्जनी मध्यमा तथा अँगूठे को इस प्रकार फैलाएँ कि ये तीनों एक - दूसरे के लम्बवत हो, यदि तर्जनी चुम्बकीय क्षेत्र की दिशा तथा मध्यमा, चालक में प्रवाहित धारा की दिशा बताती हैं, तो अंगूठा चालक पर आरोपित बल की दिशा बताएगा । इसे फ्लेमिंग का वामहस्त नियम कहते हैं।
(2). फ्लेमिंग का दक्षिण हस्त नियम लिखिए ।

उत्तर- अपने दाएँ हाथ की तूर्जनी, मध्यम तथा अंगुठे को इस प्रकार फैलाइए कि तीनो एक दूसरे के परस्पर लम्बवत हों, यदि तर्जनी चुम्बकीय क्षेत्र की दिशा तथा अंगूठा चालक की गति की दिशा की ओर संकेत करता है, तो मध्यमा चालक में प्रेरित विद्युत धारा की दिशा बताती है
(3). चुम्बक के निकट लाने पर दिक्सूचक की सूई विक्षेपित क्यों हो जाती है ?
उत्तर- दिक्सूचक को चुम्बक के निकट लाने पर, चुम्बक के चुम्बकीय क्षेत्र के कारण दिक्सूचक सुई पर एक बलयुग्म कार्य करता है जिससे दिक्सूचक सूई विक्षेपित हो जाती है।
(4). चुम्बकीय क्षेत्र रेखाओं के गुण लिखिए।

उत्तर- (1) चुम्बकीय क्षेत्र रेखाएँ चुम्बक के बाहर दक्षिण ध्रुव से निकलकर दक्षिण ध्रुव में प्रवेश करती है। जबकि चुम्बक के अन्दर इनकी दिशा ध्रुव से उत्तर ध्रुव की ओर होती है।
(2) चुम्बकीय क्षेत्र रेखाएँ एक बंद वक्र का निर्माण करती है।
(3) चुम्बकीय क्षेत्र रेखाएँ एक-दूसरे को कभी भी नहीं काटती है क्यों कि एक बिन्दु पर चुम्बकीय क्षेत्र की दो दिशाएँ संभव नहीं हैं।
(5). एक धारावाही परिनालिका छड़ चुम्बक के समान व्यवहार करती है। कैसे ?

उत्तर- (1) धारावाही, परिनालिका को स्वन्त्रतापूर्वक लटकाने पर इसके अक्ष उत्तर तथा दक्षिण दिशाओं की ओर रुकते है।
(2) धारावाही परिनालिका के पास दिक्सूचक सूई विक्षेपित होती है।
(3) धारावाही परिनालिका के समान ध्रुवों के मध्य प्रतिकर्षण तथा विपरित ध्रुवों के मध्य आकर्षण पाया जाता है
उपरोक्त कारणों से स्पष्ट है की एक धारावाही परिनालिका छड़ चुम्बक की तरफ व्यवहार करती है।
(6). लघुपथन क्या है ? इससे क्या हानियाँ हो सकती है ?

उत्तर- जब विद्युतन्मय तार तथा उदासीन तार दोनों सीधे सम्पर्क में आने है तो परिपथ में विद्युत धारा का मान अधिक हो जाता है। इसे लघुपथन कहते हैं।
लघुपथन से होने वाली हानियाँ :- लघुपथन से परिपथ में विद्युत धारा अधिक बहने लगती है जिससे परिपथ जल सकता है तथा आग लग सकती है।
(7). भुसम्पर्क तार क्या है ? धातु के आवरण वाले विद्युत साधित्रों को भूसंपर्कित करना क्यों आवश्यक है ?
उत्तर- भुसम्पर्क तार - घरेलू विद्युत परिपथ में विद्युन्मय तथा उदासीन तारों के साथ एक तीसरा तार भी लगा होता है इस तार का सम्पर्क घर के निकट जमीन से धातु की प्लेट के साथ होता है। इस तार को भूसंपर्क तार कहते हैं।

धातु के साधियों जैसे रेफ्रीजरेटर, टोस्टर, इस्त्री आदि को भूसंपर्क तार से जोड़ देने पर साधित्र के आवरण से विद्युत धारा का क्षय होने पर आवरण का विभव भूमि के विभव के बराबर हो जाता है। जिसके साधित्र का उपयोग करने वाला व्यक्ति तीव्र आघात से बच जाता हैं।
(8). पाश के भीतर तथा बाहर चुम्बकीय क्षेत्र की दिशा ज्ञात करने हेतु किस नियम को काम में लेंगे नियम का उल्लेख कीजिए।
उत्तर- दक्षिण- हस्त अंगुष्ठ नियम के द्वारा ही पाश के भीतर तथा बाहर चुम्बकीय क्षेत्र की दिशा ज्ञात की जा सकती है
इस नियम के अनुसार अपने दाएँ हाथ से विद्युत धारावाही चालक को इस प्रकार पकड़े की अंगूठा विद्युत धारा की दिशा की ओर संकेत करे तो अंगुलीया चालक के चारों ओर चुम्बकीय क्षेत्र को क्षेत्र रेखाओं की दिशा में लिपटी होंगी।
(9). किसी क्षैतिज शक्ति संचरण लाइन (पावर लाइन) में पूर्व से पश्चिम दिशा की ओर विद्युत धारा प्रवाहित हो रही है। इसके ठीक नीचे के किसी बिंदु पर तथा इसके ठीक ऊपर के किसी बिंदु पर चुम्बकीय क्षेत्र की दिशा क्या है ?
उत्तर- विद्युत धारा पूर्व से पश्चिम की ओर प्रवाहित हो रही है। दक्षिण हस्त अंगुष्ट नियम को लागु करने पर पूर्वी सिरे से अवलोकन करने पर चुम्बकीय क्षेत्र की दिशा (तार के ऊपर या नीचे किसी भी बिंदु पर) तार के लंबवत तल में दक्षिणावर्त होगी। इसी प्रकार से तार के पश्चिमी सिरे से अवलोकन करने पर चुम्बकीय क्षेत्र की दिशा वामावर्त होगी।
(10). मान लीजिए आप किसी चैम्बर में अपनी पीठ को किसी एक दिवार से लगाकर बैठे है। कोई इलेक्ट्रॉन पुंज आपके पीछे की दिवार से सामने वाली दीवार की ओर क्षैतिज गमन करते हुए किसी प्रबल चुम्बकीय क्षेत्र द्वारा आपके दाई ओर विक्षेपित हो जाता है, चुम्बकीय क्षेत्र की दिशा क्या होगी?

उत्तर- चुम्बकीय क्षेत्र की दिशा उर्ध्वाधरत: अधोमुखी है। विद्युत धारा की दिशा सामने वाली दिवार से पीछे को दीवार तक है। क्योंकि ऋनावेशित इलेक्ट्रॉन पीछे की दिवार से सामने की दीवार की ओर गमन करते है। चुम्बकीय बल की दिशा दाई ओर होती है। इस प्रकार फ्लेमिंग के वाम हस्त नियम का प्रयोग करते हुए यह निष्कर्ष निकाला जाता है। कि किसी चैम्बर में चुम्बकीय क्षेत्र की दिशा अधोमुखी होती है।
(11). घरेलू विद्युत परिपथों में अतिभारण से बचाव के लिए क्या सावधानी बरतनी चाहिए।
उत्तर- (1) एक ही सॉकेट से एक से अधिक साधित्रों को नहीं जोड़ना चाहिए।
(2) एक ही समय में बहुत अधिक साधित्रों का एक साथ प्रयोग नहीं करना चाहिए।
(3) दोष पूर्ण साधित्रों को परिपथ में नहीं जोड़ना चाहिए।
(4) विद्युत परिपथ में फ्यूज जुड़ा होना चाहिए।
(12). विद्युत का उपयोग करते समय रखी जाने वाली कोई तीन सावधानियाँ लिखो।
उत्तर- (1) फेज तार को हमेशा स्वीच के नियंत्रण में ही रखना चाहिए
(2) विद्युत औजारों के ऊपर विद्युत रोधी आवरण होना चाहिए
(3) फ्यूज उपयुक्त क्षमता एवं पदार्थ का होना चाहिए।

अंक भार -5

प्रश्न-4 = वस्तुनिष्ठ-1, रिक्त स्थान -1 , अतिलघु -1 , लघु -1

वस्तुनिष्ठ प्रश्न

(1). पारितंत्र में कौनसे घटक शामिल होते है -
(1) जैव घटक
(2) अजैव घटक
(3) जैव व अजैव दोनों
(4) कोई नहीं
(3)
(2). आहार श्रृंखला का प्रथम पोषी स्तर है-
(1) उत्पादक
(2) उपभोक्ता
(3) मांसाहारी
(4) अपमार्जक
(1)
(3). स्वपोषी सौर प्रकाश में निहित ऊर्जा को ग्रहण करके कौनसी ऊर्जा में बदलते है-
(1) भौतिक ऊर्जा
(2) रासायनिक ऊर्जा
(3) ऊष्मीय ऊर्जा
(4) चुम्बकीय ऊर्जा
(2)
(4). आहार श्रृंखला में एक पोषी स्तर से दूसरे पोषी स्तर में कितनी ऊर्जा स्थानान्तरित होती है -
(1) 50%
(2) 5%
(3) 10%
(4) 100%
(3)
(5). आहार जाल में किस प्रकार की आहार श्रृंखला उत्तम मानी जाती है -
(1) सीधी आहार श्रृंखला
(2) शाखान्वित आहार श्रृंखला
(3) 1 व 2 दोनों
(4) 1 व 2 कोई भी नहीं (2)
(6). एक स्थलीय पारितंत्र में हरे पौधे की पत्तियों द्वारा प्राप्त होने वाली सौर ऊर्जा का कितने प्रतिशत भाग खाद्य ऊर्जा में परिवर्तित होता है -
(1) 1%
(2) 5%
(3) 6%
(4) 3%
(7). खाद्य जाल में ऊर्जा का प्रवाह किस प्रकार होता है-
(1) चतुर्दिशीय
(2) त्रिदिशीय
(3) द्विदिशीय
(4) एकदिशीय
(8). निम्न में से कौन आहार श्रृंखला का निर्माण करते हैं।
(1) उत्पादक \rightarrow मांसाहारी \rightarrow शाकाहारी \rightarrow अपघटक
(2) उत्पादक \rightarrow शाकाहारी \rightarrow माँसाहारी \rightarrow अपघटक
(3) अपघटक \rightarrow उत्पादक \rightarrow मांसाहारी \rightarrow शाकाहारी
(4) शाकाहारी \rightarrow माँसाहारी \rightarrow उत्पादक \rightarrow अपघटक(
(9). उपभोक्ता को मुख्यतया बाँटा गया है-
(1) शाकाहारी
(2) मांसाहारी
(3) सर्वाहारी
(4) उपरोक्त सभी
(10). हरे पौधे प्रकाश की उपस्थिति में आहार बनाने में कौनसी गैस का इस्तेमाल करते हैं-
(1) O_{2}
(2) $C F C$
(3) CO_{2}
(4) N_{2}
(11). ओजोन के एक अणु में ऑक्सीजन के कितने परमाणु होते है-
(1) 1
(2) 2
(3) 3
(4) 4
(3)
(12). वायुमण्डल में ओजोन की मात्रा में तीव्रता से गिरावट कौनसे वर्ष में देखी गई -
(1) 1980
(2) 1981
(3) 1982
(4) 1983
(1)
(13). आहार श्रृंखला में सर्वाधिक ऊर्जा किस स्तर पर संचित होती है-
(1) अपघटक में
(2) माँसाहारी में
(3) शाकाहारी में
(4) उत्पादक में
(4)
(14). निम्न में से कौन आहार श्रृंखला का निर्माण करते है।
(1) घास, गेहूँ, आम
(2) घास, बकरी तथा मानव
(3) बकरी, गाय तथा हाथी
(4) घास, मछली और बकरी
(15). जैव आवर्थन उत्पन्न करने वाला पदार्थ है-
(1) पीड़कनाशी
(2) डी. डी. टी.
(3) शाकनाशी
(4) उपर्युक्त सभी
(16). अपमार्जक का कार्य है -
(1) भोजन का निर्माण करना
(2) वायु को शुद्ध करना
(3) वायु को अशुद्ध करना
(4) पदार्थो का चक्रीकरण करना

रिक्त स्थानों की पूर्ति करो -
(17). ऊर्जा के पिरामिड सदैव. \qquad होते है।
उत्तर- सीधे
(18). ओजोन परत सूर्य से आने वाली. \qquad से पृथ्वी को सुरक्षा
प्रदान करती है ।
(RBSE 2015)
उत्तर- पराबैंगनी विक्रिण
(19). रेफ्रीजेरेटर में.
.. रसायन का उपयोग किया जाता है।
उत्तर- CFC (क्लोरो फ्लुओरो कार्बन)
(20). जो पदार्थ जैविक प्रक्रम द्वारा अपघटित हो जाते है उन्हें. \qquad
कहते है।
(RBSE 2023)
उत्तर- जैव निम्नीकरण
(21). अधिकतम ऊर्जा. \qquad पोषक स्तर पर संचित होती है।
उत्तर- उत्पादक

अतिलघुत्तरात्मक प्रश्न

(22). पारितंत्र में उपस्थित अजैव घटको के नाम लिखिए।

उत्तर- ताप, वर्षा वायु, मृदा, खनिज इत्यादि अजैव घटक पारितंत्र में उपस्थित होते है।
(23). प्राकृतिक व कृत्रिम पारितंत्र के दो - दो उदाहरण लिखिए ।

उत्तर- प्राकृतिक पारितंत्र - वन, तालाब
कृत्रिम पारितंत्र - खेत, बगीचा
(24). उत्पादक किसे कहते हैं ?

उत्तर- हरे पौधे व नील हरित शैवाल जो प्रकाश संश्लेषण द्वारा सूर्य ऊर्जा को रासायनिक ऊर्जा में परिवर्तित करते हैं, उत्पादक कहलाते है।

(25). उपभोत्ता किसे कहते हैं ?

उत्तर- वे जीव जो उत्पादक द्वारा उत्पादित भोजन पर प्रत्यक्ष था अप्रत्यक्ष

रूप से निर्भर करते हैं, उपभोक्ता कहलाते है।
(26). आहार श्रृंखला किसे कहते हैं ?
(RBSE 2016)
उत्तर- जीवों की एक श्रृंख्खला जो एक- दूसरे का आहार करते हैं तथा विभिन्न जैविक स्तरों का निर्माण करते है, आहार श्रृंखला कहलाती हैं।
(27). जैव आवर्धन किसे कहते है ?

उत्तर- हानिकारक अजैव निम्नीकरणीय पदार्थो का खाद्य श्रृंखला में प्रवेश होकर तथा प्रत्येक उच्चतम पोषक स्तर पर उत्तरोत्तर सान्द्रता में वृद्धि होना , जैव आवर्धन कहलाता है ।
(28). अपमार्जक किसे कहते है ?
(RBSE 2017)
उत्तर- वे सुक्ष्मजीव जो मृत जैव अवशेषों में उपस्थित जटिल कार्बनिक पदार्थों को सरल कार्बनिक पदार्थों में बदल देते हैं अपमार्जक / अपघटक कहलाते है।
उदा. जीवाणु, कवक
(29). पराबैंगनी विकिरण मानव में कौनसा कैंसर उत्पन्न करती है ?

उत्तर- मानव में त्वचा का कैंसर
(30). निम्न का पूरा नाम लिखिए -
(RBSE 2022)
(i) UNEP (ii) CFC

उत्तर- (i) UNEP - संयुक्त राष्ट्र पर्यावरण कार्यक्रम
(united Nations Environment Programme)
(ii) CFC - क्लोरोफ्लुओरोकार्बन
(chloro Fluoro carbon)
लघुरात्मक प्रश्न -
(31). पारितंत्र किसे कहते है ? पारितंत्र के घटकों के नाम लिखिए।

उत्तर- किसी क्षेत्र के सभी सजीव तथा उसके चारो ओर के वातावरण के अजैव कारक मिलकर पारितंत्र कहलाता है। पारितंत्र के दो घटक होते है।
(1) जैविक घटक - इसमें सभी सजीव आते है। जैसे पेड़ -

पौधे , जंतु तथा सूक्ष्मजीव।
(2) अजैव घटक-इसमें सभी निर्जीव भौतिक कारक आते है। जैसे- ताप, वर्षा, वायु, मृदा एवं खनिज।
(32). जैव निम्नीकरणीय तथा अजैव निम्नीकरणीय को उदाहरण सहित समझाइए।
उत्तर- जैव निम्नीकरणीय-वे पदार्थ जो जैविक प्रक्रम द्वारा आसानी से अपघटित हो जाते है, जैव निम्नीकरणीय कहलाते है।
उदाहरण - खाद्य पदार्थ, कपड़ा, शाक - सब्जी, पेड़ - पौधे का कचरा, कागज, फल, पशुओं तथा मानव का मलमूत्र आदि।
अजैव निम्नीकरणीय - वे पदार्थ जो जैविक प्रक्रम द्वारा अपघटित
नहों होते है,अजैव निम्नीकरणीय कहलाते है।
उदाहरण - कॉच, प्लास्टिक तथा पॉलीथीन की थैलियां
(33). खाद्य जाल किसे कहते है ? समझाइए।

उत्तर- विभिन्न खाद्य श्रृंखलाए आपस में मिलकर एक जाल का निर्माण करती है। उसे खाद्य जाल कहते है सामान्यत: प्रत्येक जीव दो या अधिक प्रकार के जीवों द्वारा खाया जाता है। अतः एक सीधी आहार श्रृंखला के बजाय जीवो के मध्य आहार सम्बन्ध शाखान्वित होते है। तथा शाखान्वित श्रृंखलाओं के जाल को ही खाद्य जाल कहते है।
(34). डिस्पोजेबल प्लास्टिक कप की अपेक्षा कागज के कप के इस्तेमाल के क्या फायदे है ?

उत्तर- डिस्पोजेबल प्लास्टिक कप अजैव निम्नीकरणीय पदार्थ है जो पर्यावरण में बने रहते है और पर्यावरण को प्रदूषित करते है जबकि कागज के कप जैव निम्नीकरणीय पदार्थ है जो पर्यावरण को प्रदूषित नहीं करते है।
(35). चाय पीने के लिए कुल्हड़ (मिट्टी के पात्र) पारितंत्र को किस प्रकार प्रभावित कर सकते हैं ?
उत्तर- बड़ी संख्या में कुल्हड़ बनाने के लिए उर्वरक मिट्टी का उपयोग किया जाएगा जिससे उत्पादकों को पर्यास्त मात्रा में पोषक तत्व नहीं मिल सकेंगे।
(36). किसी पारितंत्र में ऊर्जा प्रवाह को समझाइए ?

उत्तर- किसी पारितंत्र में ऊर्जा प्रवाह की दो मुख्य विशेषताएँ होती है -
(i) ऊर्जा का प्रवाह एकदिशिक होता है। स्वपोषी जीवों द्वारा ग्रहण की गई ऊर्जा पुनः सौर ऊर्जा में परिवर्तित नहीं होती तथा शाकाहारियों को स्थानांतरित की गई ऊर्जा पुनः पादपों के लिए उपलब्ध नहीं होती है।
(ii) प्रत्येक स्तर पर ऊर्जा की हानि (10%) होने के कारण प्रत्येक पोषी स्तर पर उपलब्ध ऊर्जा में उत्तरोतर कमी होती जाती है।

(37). एक पारितंत्र में ऊर्जा प्रवाह को आरेख द्वारा समझाइए।

 उत्तर-

पारितंत्र में ऊर्जा का पिरामिड सदैव सीधा प्रात्त होता है।

कक्षा-10

समय: 3 घंटा 15 मिनट

अंक -80

परीक्षार्थियों के लिए निर्देश :-

1. परीक्षार्थी सर्वप्रथम अपने प्रश्न पत्र पर नामांक अनिवार्यत: लिखें।
2. सभी प्रश्न हल करने अनिवार्य है।
3. प्रत्येक प्रश्न का उत्तर दी गई उत्तर पुस्तिका में ही लिखें।
4. जिन प्रश्नों में आन्तरिक खण्ड है इन सभी के उत्तर एक साथ ही लिखें।
5. प्रश्न का उत्तर लिखने से पूर्व प्रश्न का क्रमांक अवश्य लिखें।
खण्ड - अ

बहुविकल्पी प्रश्न
(1). निम्न प्रश्नों के उत्तर का सही विकल्प का चयन कर उत्तर पुस्तिका में लिखिए।
(i). आमाशय में स्रावित अम्ल का नाम है ?
(1) साइट्रिक अम्ल
(2) सिरके का अम्ल
(3) हाइड्रोक्लोरिक अम्ल
4) लैक्टिक अम्ल
(3)
(ii). दो तंत्रिकाओं के मध्य खाली स्थान कहलाता है ?
(1) द्रुमिका
(2) सिनेप्स
(3) एक्सौन
(4) आवेग
(2)
(iii). निम्न में से पादप वृद्धि निरोधक हार्मोन है।
(1) ऑक्सीन
(2) साइटो काइिनन
(3) एब्सिसिक अम्ल
(4) जिब्बरेलीन
(3) (xv). विद्युत चुम्बक बनाने के लिए किस पदार्थ का उपयोग किया जाता है ?
(1) पीतल
(2) नरम लोहा
(3) इस्पात
(4) कांसा
(v). आपतन कोण का मान सदैव होता है।
(1) परावर्तन कोण से ज्यादा
(2) परावर्तन कोण के समान
(3) परावर्तन कोण से कम
(4) उपर्युक्त सभी
(2)
(vi). मानव नेत्र का कौनसा भाग नेत्र को रंग प्रदान करता है ?
(1) नेत्र लैंस
(2) परितारिका
(3) पूतली
(4) दृष्टिपटल
(2)
(vii). यदि किसी परिपथ में 5 सैकण्ड में 2 कुलॉम आवेश प्रवाहित होता है तो परिपथ में बहने वाली धारा का मान होगा-
(1) 2 A
(2) 4 A
(3) 0.4 A
(4) 0.2 A
(3)
(viii). प्रतिरोधकता का मात्रक होता है-
(1) ओम/मीटर
(2) ओम \times मीटर
(3) वोल्ट/मीटर
(4) वोल्ट
(ix). अभिक्रिया $\mathrm{CuO}+\mathrm{H}_{2} \xrightarrow{\text { तापन }} \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$ मे अपचायक पदार्थ कौनसा है ?
(1) CuO
(2) Cu
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) H_{2}
(x). हरे पादप प्रकाश संश्लेषण में किस गैस का उपयोग करते है ?
(1) H_{2}
(2) O_{2}
(3) CO_{2}
(4) Cl_{2}
(xi). कमरे के ताप पर द्रव अवस्था में पायी जाने वाली धातु है ?
(1) सोडियम
(2) ब्रोमीन
(3) पारा(मर्करी)
(4) चांदी
(xii). मार्श गैस का रासायनिक नाम होता है ?
(1) ऐथीन
(2) मेथेन
(3) प्रोपीन
(4) ब्यूटेन
(xiii). जठर रस की प्रकृति होती है ?
(1) अम्लीय
(2) उदासीन
(3) क्षारीय
(4) उभयधर्मी
(xiv). मानव में भुण का रोपण मादा जनन तंत्र के किस अंग से होता है ?
(1) गर्भाशय
(2) योनी
(3) अण्डनाहिनी
(4) अण्डाशय
(iv). एक संकर संकरण में जीन प्ररूप होता है।
(1) $9: 3: 3: 1$
(2) $1: 2: 1$
(3) $3: 1$
(4) $1: 2: 1: 2: 4: 2: 1: 2: 1$
(2). रिक्त स्थानों की पूर्ति कीजिए -
(i). लार में पाया जाने वाला एंजाइम............... होता है।

उत्तर- टायलिन
(ii). प्रकृति में पायी जाने वाली सर्वोत्तम चालक धातु है।
उत्तर- चांदी
(iii). मानव में मादा जनन हार्मोन. \qquad होता है।
उत्तर- एस्ट्रोजन
(iv). कीटों के डंक में पाया जाने वाले अम्ल का नाम \qquad होता है।
उत्तर- मेथेनॉइक अम्ल
(v). लेंस की शक्ति का मात्रक \qquad .होता है।
उत्तर- डाइऑप्टर
(vi). अमीटर को सदैव परिपथ के. \qquad .क्रम में संयोजित किया जाता है।
उत्तर- श्रेणी क्रम
(vii). अमीबा में भोजन का अंतर्ग्रहण. \qquad द्वारा होता है।
उत्तर- पादाभ

अतिलघुत्त्मरात्मक प्रश्न- (प्रश्नों का उत्तर एक शब्द या एक पंक्ति में लिखिए।)
(i). नीम्बू में कौनसा अम्ल पाया जाता है ?

उत्तर- साइट्रिक अम्ल
(ii). एक्वा रेजिया क्या है ?

उत्तर- तीन भाग सान्द्र हाइड्रोक्लोरिक अम्ल (HCl) तथा एक भाग सांद्र नाइट्रिक अम्ल $\left(\mathrm{HNO}_{3}\right)$ का ताजा मिश्रण होता है।
(iii). आयनिक यौगिको के गलनांक तथा क्वथनांक उच्च क्यों होते है ?
उत्तर- क्योंकि आयनिक यौगिक में मजबूत अंतर-आयनिक आकर्षण बल पाया जाता है, जिसे तोड़ने के लिए अधिक ऊर्जा की आवश्यकता होती है।
(iv). प्रयोगशाला में संश्लेषित प्रथम कार्बनिक यौगिक का नाम लिखिये?
उत्तर- यूरिया
(v). रसायनुवर्तन गति का एक उदाहरण लिखिए ?

उत्तर- पराग नलिका का बीजांड की ओर वृद्धि करना ।
(vi). राइजोपस मे जनन किस विधि द्वारा होता है ?

उत्तर- बीजाणु समासंघ
(vii). वक्रता त्रिज्या और फोकस दूरी में क्या संम्बंध होता है ?

उत्तर- गोलीय दर्पणों के लिए वक्रता त्रिज्या फोकस दूरी से दोगुनी होती है। अर्थात $R=2 f$
(viii).स्नेल का नियम लिखिए ?

उत्तर- प्रकाश के किसी निश्चित रंग तथा निश्चित माध्यमों के युग्म के लिए आपतन कोण की ज्या ($\operatorname{Sin} \mathrm{i}$) तथा अपवर्तन कोण की ज्या (Sin r) का अनुपात स्थिर होता हैं।

$$
\text { अर्थात }=\frac{\operatorname{Sin} i}{\sin r}=\text { स्थिरांक }
$$

(ix). चुम्बकीय क्षेत्र रेखाएं एक दूसरे को प्रतिच्छेद क्यों नहीं करतीं है ?
उत्तर- प्रतिच्छेद बिन्दु पर दिक्सूचक रखने पर दिक्सूचक सूई केवल एक ही दिशा की ओर संकेत करती हैं।
(x). ओजोन अपक्षय का मुख्य कारक लिखिए ?
उत्तर- क्लोरोफ्लोरो कार्बन (CFC)

खण्ड-ब

लघुउत्तरात्मक प्रश्न:- (प्रश्न से. 4 से 15 तक उत्तर शब्द सीमा 50 शब्द)
(4). उभयधर्मी ऑक्साइड किसे कहते है ? दो उदाहरण लिखिए ?

उत्तर- ऐसे धातु ऑक्साइड जो अम्ल व क्षार दोनों के साथ क्रिया कर लेते है अर्थात् जो क्षारीय और अम्लीय दोनों प्रकार के व्यवहार प्रकट करते हैं, उन्हें उभयधर्मी ऑक्साइड कहते हैं।
उदाहरण- ऐलुमिनियम ऑक्साइड $\left(\mathrm{Al}_{2} \mathrm{O}_{2}\right)$ तथा जिंक ऑक्साइड (ZnO)
(5). संक्षारण किसे कहते है। संक्षारण से बचाव का उपाय लिखिए।

उत्तर- संक्षारण- धातु की सतह का वायु, नमी या रसायनो के प्रभाव से धीरे-धीरे नष्ट होना संक्षारण कहलाता है।
उपाय - पेंट करके, तेल लगाकर, ग्रीज लगाकर, यशदलेपन (लोहे की वस्तुओं पर जस्ते की परत चढ़ाकर) कोमियम लेपन,

ऐनोडीकरण या मिश्रधातु बनाकर लोहे को जंग लगने से बचाया जा सकता है।
(6). संतृस्त तथा असंतृत्त हाइड्रोकार्बन मे दो अन्तर लिखिए।

उत्तर- संतृस हाइड्रोकार्बन- ऐसे हाइड्रोकार्बन जिनके संरचना सूत्र में केवल एकल बंध उपस्थित हो संतृस हाइड्रोकार्बन कहलाते हैं। जैसे-एल्केन
असंतृप्त हाइड्रोकार्बन- ऐसे हाइड्रोकार्बन जिनके संरचना सूत्र कम से कम एक द्विबंध या त्रिबंध उपस्थित हो असंतृप्त हाइड्रोकार्बन कहलाते हैं। जैसे- एल्कीन, एल्काइन।
(7). एस्टरीकरण किसे कहते है ? रासायनिक समीकरण लिखिए ?

उत्तर- जब ऐसीटिक अम्ल की अभिक्रिया किसी अम्ल उत्प्रेरक उपस्थिति में एथेनॉल के साथ करवायी जाती है तो एस्टर व जल बनते हैं। इस अभिक्रिया को एस्टरीकरण कहते हैं।
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
(8). रन्ध्र किसे कहते है। रन्ध्र के दो कार्य लिखिए ?

उत्तर- पौधों की पत्तियों पर पाए जाने वाले छोटे-छोटे छिद्रों को रन्ध्र कहते हैं।
कार्य- (i) गैसों के आदान-प्रदान में सहायक।
(ii) वाष्पोत्सर्जन में सहायक।
(9). सुमेलित कीजिए -

समूह-l
जीव
(i)अमीबा
(ii) प्लेनेरिया
(A) कायिक प्रवर्धन
(B) बहुखण्डन
(iii) प्लैजमोडियम
(C) पुनर्जनन
(iv) ब्रायोफिलम
(D) द्विखण्डन

समूह-II

जनन की विधि

उत्तर- [i-D, ii-C, iii-B, iv-A]
(10). पुष्प का नामांकित चित्र बनाइए?

उत्तर-

(11). आयताकार काँच की स्लैब से प्रकाश के अपवर्तन का किरण आरेख बनाइए?
उत्तर-

(12). आभासी तथा वास्तविक प्रतिबिम्ब में दो अन्तर लिखिए ?

उत्तर- वास्तविक प्रतिबिम्ब- किसी बिन्दु स्रोत से चलने वाली प्रकाश किरण यदि परावर्तन/अपवर्तन के पश्चात् वास्तव में किसी बिन्दु

पर मिलती हैं, तो प्रतिबिम्ब वास्तविक कहलाता है। वास्तविक प्रतिबिम्ब सामान्यतः उल्टा बनता है तथा इसे पर्दे पर प्राप्त किया जा सकता है।
आभासी प्रतिबिम्ब - किसी बिन्दु स्रोत से चलने वाली प्रकाश किरणे यदि परावर्तन/अपवर्तन के पश्चात् वास्तव में किसी बिन्दु पर नहीं मिलती हैं, बल्कि पीछे बढ़ाने पर मिलती हुई प्रतीत होती हैं, तो प्रतिबिम्ब आभासी कहलाता है। आभासी प्रतिबिम्ब सामान्यतः सीधा होता है तथा उसे पर्दे पर प्राप्त नहीं किया जा सकता।
(13). फ्लेमिंग का वामहस्त नियम लिखिए?

उत्तर- इस नियम के अनुसार यदि बायें हाथ की मध्यमा, तर्जनी व अंगूठे को एक-दूसरे के लम्बवत् इस प्रकार फैलाएं कि यदि तर्जनी चुम्बकीय क्षेत्र की दिशा व मध्यमा धारा की दिशा इंगित करे तो अंगूठा चालक पर लगने वाले बल अर्थात् उसकी गति की दिशा को इंगित करता है।
(14). विद्युत धारा का तापीय प्रभाव किसे कहते है ? विद्युत धारा के तापीय प्रभाव पर आधारित दो युक्तियों के नाम लिखिये।
उत्तर- जब किसी प्रतिरोध तार से विद्युत धारा प्रवाहित की जाती है तो जूल के नियमानुसार $\left(H=l^{2} R t\right)$ उष्मा उत्पन्न होती है जिससे प्रतिरोध तार गर्म हो जाता है और ऊष्मा देने लगता है। इसे विद्युत धारा का तापीय प्रभाव कहते हैं।
विद्युत धारा के तापीय प्रभाव पर आधारित प्रमुख युक्तियां विद्युत हीटर, विद्युत इस्तरी, विद्युत टोस्टर, विद्युत केतली आदि।
(15). जैव निम्नीकरणीय तथा अजैव निम्नीकरणीय अपशिष्ट में क्या अन्तर है ?
उत्तर- जैव निम्नीकरणीय पदार्थ:- वे पदार्थ जो जैविक प्रक्रम द्वारा अपघटित हो जाते है। जैसे-पादप व जंतुअपशिष्ट
अजैव निम्नीकरणीय पदार्थ:- ऐसे पदार्थ जो जैविक प्रक्रम द्वारा अपघटित नहीं होते हैं। जैसे-प्लास्टिक अपशिष्ट

खण्ड-स

(16). विस्थापन अभिक्रिया किसे कहते है ? उदाहरण द्वारा समझाइए ?

उत्तर- किसी अधिक क्रियाशील तत्व द्वारा कम क्रियाशील तत्व को किसी क्रियाकारी पदार्थ से विस्थापित करना विस्थापन कहलाता है। जैसे-
$\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(a q) \rightarrow \mathrm{ZnSO}_{4}(a q)+\mathrm{Cu}(s)$

अथवा

निम्न अभिक्रियाओं में अन्तर लिखिए
(a) संयोजन तथा वियोजन अभिक्रिया
(b) ऊष्माशोषी तथा उष्माक्षेपी अभिक्रिया

उत्तर- (a) संयोजन अभिक्रिया- जब किसी अभिक्रिया में दो या दो से अधिक अभिकारक मिलकर एकल उत्पाद का निर्माण करते हैं, तो ऐसी अभिक्रिया को संयोजन अभिक्रिया कहते हैं।
उदाहरणार्थ- कोयले का दहन
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
वियोजन अभिक्रियाएँ- ऐसी रासायनिक अभिक्रियाएँ जिनमें कोई पदार्थ छोटे-छोटे पदार्थों या यौगिको में विघटित हो जाता है, वियोजन अभिक्रियाएँ कहलाती है
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(b) ऊष्माक्षेमी अभिक्रिया- ऐसी अभिक्रिया जिनके सम्पन्न होने पर ऊष्मा का उत्सर्जन होता है, ऊष्माक्षेपी अभिक्रिया कहलाती हैं।
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}+$ ऊष्मा
ऊष्माशोषी अभिक्रिया - ऐसी अभिक्रिया जिनके सम्पन्न होने पर ऊष्मा का अवशोषण होता है, ऊष्माशोषी अभिक्रिया कहलाती हैं।

$$
2 \mathrm{Hl}+\text { ऊष्मा } \rightarrow \mathrm{H}_{2}+\mathrm{l}_{2}
$$

(17). (i) अग्नाशय ग्रंथि से स्रावित हार्मोन का नाम एवं कार्य लिखिए?
(ii) मानव में संकटकालीन हार्मोन का नाम एवं कार्य लिखिए?

उत्तर- (i) अग्नाशय ग्रंथि से स्त्रावित हार्मोन - इन्सुलिन
कार्य- इंसुलिन हॉर्मोन रक्त में ग्लूकोज की मात्रा का नियमन करता है। इंसुलिन हॉर्मोन का स्रावण कम होने से मधुमेह रोग (डाइबिटीज) हो जाता है जिससे रक्त में ग्लूकोज की मात्रा बढ़ जाती है जिसके शरीर पर कई हानिकारक प्रभाव पड़ते है। रक्त में ग्लूकोज (शर्करा) की मात्रा का नियंत्रण इन्सुलिन हार्मोन ही करता है।
(ii) संकटकालीन हार्मोन- एड्रीनलीन हार्मोन

कार्य- एड्रीनलीन हार्मोन मुख्य रूप से हद्य पर प्रभाव डालता है, जिससे हृद्य तेजी से धड़कने लगता है और पेशियों में ऑक्सीजन अधिक मात्रा में पहुँचाना शुरू करती है, जिससे पेशियाँ अधिक सक्रिय हो जाती हैं।

अथवा

(i) प्रर्तिवर्ती क्रिया किसे कहते है ? उदाहरण लिखिए ?
(ii) किन्ही दो पादप हार्मोन के नाम एवं कार्य लिखिए?

उत्तर- (i) संवेदी अंगों द्वारा ग्रहण किये गये उद्दीपनों को संवेदी तन्त्रिकाओं द्वारा मेर्रूज्जु तक लेकर जाना एवं तुरन्त ही उसका प्रत्युत्तर चालक तन्त्रिकाओं द्वारा पेशियों, ऊतकों या अंगों में लाकर उसको उत्तेजित करने की क्रिया को प्रतिवर्ती क्रिया कहते हैं। उदाहरण - स्वादिष्ट भोजन देखने पर ,मुँह में लार आना
(ii) पादप हार्मोन्स के नाम एवं कार्य:-
(a) ऑक्सिन हार्मोन- यह वृद्धि हार्मोन है जो कोशिकाओं की लंबाई की वृद्धि में सहायक होता है।
(b) जिब्बेरेलिन हार्मोन- यह भी वृद्धि हार्मोन है। यह तने को लम्बाई में वृद्धि करता है।
(18). लिंग निर्धारण की क्रियाविधि को आरेख द्वारा समझाइए?

उत्तर-

मनुष्य में लिंग निर्धारण- नर में लिंग गुणसूत्र XY होते हैं। अर्थात् दोनों लिंग गुणसूत्र अलग-अलग होते हैं जबकि मादा में दोनों लिंग गुणसूत्र समान XX होते हैं। पुरुष में दो प्रकार के शुक्रणु उत्पन्न होते हैं। आधे शुकाणु में X गुणसूत्र होता है

जबकि शेष आधे शुक्राणुओं में Y गुणसूत्र होता है। स्त्री केवल एक प्रकार के अण्डाणु उत्पन्न करती है, जिसमें X गुणसूत्र होते हैं। जब X गुणसूत्र युक्त शुक्राणु अण्डाणु से संयोग करता है तो उत्पन्न होने वाली सन्तान लड़की (XX) होती है,जबकि Y गुणसूत्र युक्त शुक्राणु अण्डाणु से संयोग करता है तो उत्पन्न होने वाली सन्तान लड़का (XY) होता है।

अथवा

प्रभाविता का नियम किसे कहते है ? आरेख द्वारा समझाइए।
उत्तर- जब एक जोड़ी विपर्यासी लक्षणों वाले जनकों (लम्बा व बौना) के मध्य क्रॉस कराया जाता है, एकल संकर संकरण कहलाता है। प्रथम पीढ़ी में जो लक्षण प्रकट होता है वह प्रभावी लक्षण होता है, जो लक्षण प्रकट नही होता वह लक्षण अप्रभावी कहलाता है। इस नियम को मेंडल का प्रभाविता का नियम कहा जाता है।

(19). (i) समंजन क्षमता किसे कहते है।
(ii) दूर दृष्टि (दीर्घ दृष्टि) दोष क्या है ? इसके निवारण हेतु किस लैंस का उपयोग किया जाता है ?
उत्तर- (i) समंजन क्षमता- अभिनेत्र लैंस की वह क्षमता जिसके कारण वह अपनी फोकस दूरी को समायोजित कर लेता है, नेत्र की समंजन क्षमता कहलाती है।
(ii) दूर दृष्टि दोष में व्यक्ति को दूर की वस्तुएं तो स्पष्ट दिखाई देती हैं लेकिन नजदीक की वस्तुएं स्पष्ट दिखाई नही देती है।
निवारण- उतल लेंस का उपयोग।

अथवा

(i) वर्ण विक्षेपण किसे कहते है ?
(ii) स्वच्छ आकाश का रंग नीला क्यों दिखाई देता है ?

उत्तर- (i) जब किसी प्रिज्म पर श्वेत प्रकाश की कोई किरण आपतित की जाती है तो प्रिज्म से अपवर्तन के पश्चात् यह किरण सात रंगों में विभक्त हो जाती है। श्वेत प्रकाश की किरण के इस प्रकार सात रंगो में विभक्तिकरण की घटना को ‘प्रकाश का वर्ण विक्षेपण’ कहते हैं।
(ii) वायुमंडल में धूल तथा जल के असंख्य कण उपस्थित होते हैं,जो नीले रंग के प्रकाश का प्रकीर्णन करते है, क्योंकि इस रंग का तरंगदैर्ध्य सबसे कम होता है। अतः आकाश का रंग नीला दिखाई देता है।
(20). (i) किन्ही दो कृत्रिम सूचकों के नाम लिखिए।
(ii) क्या होता है, जब धातु कार्बोनेट, अम्ल के साथ अभिक्रिया करते हैं ? अभिक्रिया का सन्तुलित समीकरण लिखिए ?
उत्तर- (i) कृत्रिम सूचक:- मिथाइल ऑरेंज और फिनॉल्फथेलिन।
(ii) धातु कार्बोनेट + अम्ल ---> लवण + कार्बनडाइऑक्साइड + जल
धातु कार्बोनेट अम्ल के साथ अभिक्रिया करके लवण, कार्बन

डाइ-ऑक्साइडगैस और जल बनाता है। जैसे-
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ अथवा
(i) धातु ऑक्साइड की प्रकृति कैसी होती है ?
(ii) बेकिंग सोडा का रासायनिक सूत्र, रासायनिक नाम तथा दो उपयोग लिखिए?
उत्तर- (i) धातु ऑक्साइड की प्रकृति क्षारीय होती है।
(ii) रासायनिक सूत्र- NaHCO_{3} रासायनिक नाम-सोडियम हाइड्रोजन कार्बोनेट (सोडियमबाइकार्बोनेट)
उपयोग - (i) बेकिंग पाउडर बनाने में ।
(ii) रसोई घर में स्वादिष्ट खस्ता पकोड़े बनाने में।
(iii) ऐन्टैसिड के रूप में।
(iv) अग्निशामक यंत्र में।
(v) पाव रोटी, केक बनाने में।
(21). (i) उत्सर्जन किसे कहते है ?
(ii) मूत्र निर्माण की क्रियाविधि के चरणों को समझाइए ?

उत्तर- (i) उत्सर्जन- वह जैव प्रक्रम जिसमें नाइट्रोजन युक्त हानिकारक उपापचयी वर्ज्य पदार्थो का निष्कासन होता है, उत्सर्जन कहलाता है।
(ii) मुत्र निर्माण की क्रियाविधि -
(a) परानिस्यंदन:- यूरिया का निर्माण यकृत में होता है वहाँ से अशुद्ध रूधिर वृक्कीय धमनी द्वारा प्रत्येक वृक्क में पहुँचता है।
अशुद्ध रूधिर लाने वाली धमनी अनेक अभिवाही धमनिकाओं में विभाजित होकर बोमेन सम्पुट में स्थित केशिका गुच्छ को रक्त देती है। ग्लोमेरूलस में रूधिर ले जाने वाली धमनियों को अभिवाही धमनियाँ तथा बाहर ले जाने वाली धमनियों को अपवाही धमनियाँ कहते हैं। अभिवाही धमनियों का व्यास अपवाही धमनियों से अधिक होने के कारण ग्लोमेरूलस में रूधिर दाब बढ़ जाता है। रूधिर दाब के कारण अभिवाही धमनियों के रूधिर से अतिसूक्ष्म निस्यंदन (Itrafiltration) द्वारा रूधिर से जल, ग्लूकोज, यूरिया, यूरिक अम्ल तथा कुछ लवण छनकर बोमेन सम्पुट में आ जाते हैं।
(b) पुनःअवशोषण:- छनित में मूत्र के साथ-साथ अतिरिक्त ग्लूकोज, एमीनो अम्ल तथा अन्य उपयोगी लवण भी होते हैं। बोमेन सम्पुट से यह सम्पूर्ण द्रव वृक्क नलिका के ग्रन्थिल भाग में जाता है। यहाँ से ग्लूकोस, उपयोगी लवण एवं जल का कुछ भाग पुनःअवशोषित किया जाता है।
(c) स्त्रावण:- अवशेष द्रव में केवल अपशिष्ट पदार्थ बचते हैं, जिन्हें मूत्र कहते हैं। यह मूत्र वृक्क नलिका से संग्रहवाहिनियों द्वारा मूत्र वाहिनियों में चला जाता है एवं आवश्यकता पड़ने पर मूत्राशय की पेशियों के संकुच से मूत्र मार्ग द्वारा शरीर से बाहर निकल जाता है।

अथवा

(i) दोहरा रक्त परिसंचरण किसे कहते है ?

(ii) धमनी तथा शिरा में क्या अन्तर है ?

उत्तर- (i) दोहरा रक्त परिसंचरण:- रक्त एक चक्र में दो बार हृदय से गुजरता है। पहली बार शरीर का समस्त अशुद्ध रूधिर हददय के दाहिने आलिन्द में एकत्रित होकर दाहिने निलय से होते हुए

फेफड़ों में जाता है, तथा दूसरी बार हृदय के बायें आलिन्द में फेफड़ों से फुफ्फुस शिराओं द्वारा एकत्रित शुद्ध रूधिर महाधमनी द्वारा समस्त शरीर में पम्प किया जाता है। इस प्रकार के रूधिर परिभ्रमण को ‘दोहरा रक्त परिसंचरण’ कहते हैं।
(ii) धमनी तथा शिरा में अन्तर -

धमनी	शिरा
1. धमनी रुधिर को हुदय से अंगों में लाती है।	1. रूधिर को अंगों से हदय की ओर लाती है।
2. फेफड़ों में जाने वाली फुफ्फुसीय धमनी के अतिरिक्त सभी में शुद्ध रुधिर होता है।	2. फुफ्फुसीय शिरा के अतिरिक्त सभी में अशुद्ध रुधिर होता है।
3. इनमें रक्त दाब उच्च होता है।	3. इनमें रक्त दाब कम होता है।

(22). (i) प्रतिरोधकता किसे कहते है ?
(ii) 1 ओम, 2 ओम तथा 3 ओम के प्रतिरोध श्रेणी क्रम में 6 वोल्ट की बैटरी से जुड़े हुए है, परिपथ का कुल प्रतिरोध तथा प्रवाहित धारा का मान ज्ञात कीजिए?
उत्तर- (i) प्रतिरोधकता:- इकाई लम्बाई एवं इकाई अनुप्रस्थ काट वाले तार का प्रतिरोध ही तार की प्रतिरोधकता (विशिष्ट प्रतिरोध) कहलाती है। प्रतिरोधकता का मात्रक $=$ ओम X मीटर
(ii) श्रेणी क्रम संयोजन में :-

कुल प्रतिरोध $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
$\mathrm{R}=1+2+3 \quad \mathrm{R}=6$ ओम

प्रवाहित धारा:- ओम के नियम से - $V=I R$
अत: $l=\frac{V}{R} \quad l=6 / 6$

$$
\mathrm{I}=1 \text { एम्पियर }
$$

परिपथ में बहने वाली कुल धारा $=1$ एम्पियर

अथवा

(i) ओम का नियम लिखिए?
(ii) किसी विद्युत परिपथ में 5 ऐम्पीयर की धारा-प्रवाहित करने पर 20 वोल्ट का विभवान्तर उत्पन्न होता है; परिपथ का प्रतिरोध ज्ञात कीजिए ?
उत्तर- (i) ओम का नियम:- यदि किसी चालक तार की भौतिक अवस्थाएँ (जैसे- लम्बाई, अनुप्रस्थ काट, ताप आदि) स्थिर रहती हैं तो इसके सिरों के मध्य उत्पन्न विभवान्तर उसमें प्रवाहित धारा के समानुपाती होता है।
अर्थात $V \propto I$ या $V=I R$ जहाँ R एक स्थिरांक है, जिसे चालक का प्रतिरोध कहते हैं।
(ii) ओम के नियम से $V=I R$

अत: $R=\frac{V}{I} \quad R=20 / 5 \quad R=4$ ओम
अतः परिपथ में का प्रतिरोध $=4$ ओम

माध्यमिक परीक्षा - 2024
 मॉडल प्रश्न पत्र - II
 विषय-विज्ञान

कक्षा-10

अंक -80

परीक्षार्थियों के लिए निर्देश :-

1. परीक्षार्थी सर्वप्रथम अपने प्रश्न पत्र पर नामांक अनिवार्यत: लिखें।
2. सभी प्रश्न हल करने अनिवार्य है।
3. प्रत्येक प्रश्न का उत्तर दी गई उत्तर पुस्तिका में ही लिखें।
4. जिन प्रश्नों में आन्तरिक खण्ड है इन सभी के उत्तर एक साथ ही लिखें।
5. प्रश्न का उत्तर लिखने से पूर्व प्रश्न का क्रमांक अवश्य लिखें।
खण्ड - अ

बहुविकल्पी प्रश्न
(1). निम्न प्रश्नों के उत्तर का सही विकल्प का चयन कर उत्तर पुस्तिका में लिखिए।
(i). मनुष्य की आहार नाल का सबसे लम्बा भाग होता है ?
(1) ग्रसनी
(2) क्षुद्धात्र
(3) ग्रासनली
(4) वृहदांत्र
(2)
(ii). तंत्रिका तंत्र की सुक्ष्म इकाई होती है ?
(1) द्रुमिका
(2) तंत्रिकाक्ष
(3) न्यूरॉन
(4) कोशिका काय
(iii). मानव में नर जनन हार्मोन होता है ?
(1) एस्ट्रोजन
(2) प्रोजेस्टेरोन
(3) इन्सुलीन
(4) टेस्टोंस्ट्टरोन
(4)
(iv). आनुवांशिकता का जनक है ?
(1) डार्विन
(2) मेण्डल
(3) लैमार्क
(4) ह्यूगो डी ब्रिज
(2)
(v). गोलीय दर्पण की वक्रता त्रिज्या (R) तथा फोकस दूरी (F) में संबंध है ?
(1) $F=2 R$
(2) $F=R / 3$
(3) $R=F$
(4) $R=2 \times F$
(4)
(vi). मानव नेत्र के किस भाग पर प्रतिबिम्ब बनता है ?
(1) कॉर्निया
(2) पुतली
(3) आइरिस
(4) रेटीना
(vii). विद्युत शक्ति का मात्रक होता है ?
(1) ओम
(2) वोल्ट
(3) जुल
(4) वॉट
(viii).निम्न में से कौनसा पद विद्युत शक्ति को निरूपित करता है ?
(1) $I R^{2}$
(2) $I R$
(3) $I^{2} R$
(4) $V I^{2}$
(ix). मैग्नीशियम का दहन किस अभिक्रिया का उदाहरण है ?
(1) संयोजन
(2) विस्थापन
(3) वियोजन
(4) अपचयन
(1)
(3) $(x y)$. विद्युत चुम्बकीय प्रेरण की खोज किसने की ?
(x). अपमार्जक सामान्यत होते हैं ?
(1) RCOOK
(2) RCOONa
(3) $R C O O R$
(4) $\mathrm{RSO}_{4} \mathrm{Na}$
(xi). सिनाबार किसका अयस्क है ?
(1) कॉपर
(2) मर्करी
(3) लोहा
(4) तांबा
(xii). आहार श्रृंखला में एक पोषी स्तर से दूसरे पोषी स्तर में कितनी ऊर्जा स्थानान्तरित होती है ?
(1) 1%
(2) 50%
(3) 10%
(4) 100%
(xiii). रक्त का pH मान होता है ?
(1) 0
(2) 7.4
(3) 1.5
(4) 2
(2)
(xiv).मानव में निषेचन की क्रिया किस अंग में होती है ?
(1) अण्डाशय
(2) अण्डवाहिनी
(3) गर्भाशय
(4) योनी
(1) ऑस्टैंड
(2) फैराडे
(3) फ्लेमिंग
(4) लेंज
(2). रिक्त स्थानों की पूर्ति कीजिए-
(i). मानव में भोजन का पूर्ण पाचन. \qquad .में होता है।
उत्तर- क्षुदांत्र
(ii). लोहे पर जस्ते की पतली परत चढ़ाने की क्रिया. \qquad कहलाती है।
उत्तर- यशदलेपन
(iii). प्लाजमोडियम में जनन.............विधी द्वारा होता है।

उत्तर- बहुखंडन
(iv). विरंजक चूर्ण का रासायनिक सूत्र \qquad होता है।
उत्तर- CaOCl_{2}
(v). वाहनो के पश्च दृश्य दर्पण के रूप मे. \qquad .दर्पण का उपयोग
किया जाता है।
उत्तर- उत्तल
(vi). विद्युत धारा का मात्रक \qquad .होता है।
उत्तर- एम्पियर
(vii). पित रस का स्त्रावण \qquad .से होता है
उत्तर- यकृत
(3). अतिलघुत्तरात्मक प्रश्न :- (प्रश्नों का उत्तर एक शब्द या एक पंक्ति मे लिखिए।)
(i). अतिअम्लता को कम करने हेतु उपयोग किये जाने वाले एक पदार्थ का नाम लिखिए?

उत्तर- मिल्क ऑफ मैग्नेशिया।
(ii). कार्बन के दो अपरूपो के नाम लिखिए ?

उत्तर- हीरा तथा ग्रेफाइट।
(iii). मेथेन की इलेक्ट्रॉन बिंदु संरचना बनाइए ?

उत्तर-

(iv). IUPAC का पूरा नाम लिखिए ?

उत्तर- इंटरनेशनल यूनियन ऑफ प्योर एंड अप्लाइड केमेस्ट्री।
(v). मानव शरीर की सबसे बड़ी अंतस्त्रावी ग्रंथि का नाम लिखिए ?

उत्तर- थायरॉइड ग्रंथि।
(vi). प्लेसेंटा/अपरा का कार्य लिखिए?

उत्तर- मां के रुधिर से भ्रूण को पोषण प्रदान करना तथा भ्रूण द्वारा उत्पत्र अपशिष्ट पदार्थो के निपटान में सहायक।
(vii). गोलीय दर्पण का सूत्र लिखिए?

उत्तर- $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$
(viii). लेंस की फोकस दूरी किसे कहते है ?

उत्तर- किसी लेंस के मुख्य फोकस बिन्दु एवं प्रकाशिक केन्द्र के बीच की दूरी को फोकस दूरी कहते है।
(ix). दिक परिवर्तक का क्या कार्य है ?

उत्तर- विद्युत परिपथ में विद्युत धारा के प्रवाह को उत्क्रमित करना।
(x). पारितंत्र में अपमार्जक की क्या भूमिका है ?
उत्तर- सूक्ष्म जीव (अपमार्जक) मृत पौधों और जन्तु अथवा उनके अपशिष्टों को अपघटित करके सरल पदार्थों में बदल देते हैं। ये पदार्थ वापस मिट्टी में चले जाते हैं इस प्रकार अपमार्जक मृत जन्तुओं का विघटन करके पर्यावरण की सफाई करते है। ये पारितन्त्र में जैव निम्नीकरणीय पदार्थों का चक्रण करते हैं।

> खंड- ब

लघुउत्तरात्मक प्रश्न :- (प्रश्न सं. 4 से 15 तक उत्तर-शब्द सीमा- 50 शब्द)
(4). भर्जन तथा निस्तापन में अन्तर लिखिए ?

उत्तर- भर्जन-सल्फाइड अयस्क को वायु की उपस्थिति में अधिक ताप पर गर्म करने वह ऑक्साइड में परिवर्तित हो जाता है, यह प्रक्रिया भर्जन कहलाती है।
निस्तापन- कार्बोनेट अयस्क को सीमित वायु में अधिक ताप पर गर्म करने पर यह ऑक्साइड में परिवर्तित हो जाता है, यह प्रक्रिया निस्पापन कहलाती है।
(5). अवक्षेपण अभिक्रिया किसे कहते है ? उदाहरण लिखिए।

उत्तर- ऐसी अभिक्रया जिनमें उत्पाद अविलेय अवक्षेप के रूप में बनता है, उन अभिक्रियाओं को अपक्षेपण अभिक्रिया कहते हैं।
$\mathrm{BaCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}(a q)$

(6). मिसेल अणू की संरचना का चिंत्र बनाइए?

उत्तर-

(7). हाइड्रोजनीकरण क्या है ? इसका औद्योगिक अनुप्रयोग क्या है ?
उत्तर- असंतृत्त हाइड्रोकार्बन किसी उत्प्रेरक की उपस्थिति में हाइड्रोजन के संयोग द्वारा सतृत्त हाइड्रोकार्बन के बनने की प्रक्रिया हाइड्रोजनीकरण कहलाती है।
जैसे $\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \xrightarrow{\mathrm{Ni} \text { उत्र्रेरक }} \mathrm{CH}_{3}-\mathrm{CH}_{3}$
औद्योगिक अनुप्रयोग- इस प्रक्रिया से वनस्पति तेलों को वनस्पति घी में बदला जाता है। वनस्पति तेलों में द्विआबन्ध होता है। निकिल उत्प्रेरक की उपस्थिति में हाइड्रोजनीकरण से वनस्पति तेल वनस्पति घी में बदल जाते है।
(8). प्रकाश संश्लेषण किसे कहते है ? इसका सन्तुलित समीकरण लिखिए।
उत्तर- हरे पेड़ पौधों द्वारा सूर्य के प्रकाश की उपस्थिति में भोजन बनाने की क्रिया को प्रकाश संश्लेषण कहते हैं।
$6 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { पुर्हरित व सूर्य का प्रकाश }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
(9). स्व परागण तथा पर-परागण में क्या अन्तर है ?

उत्तर- स्व-परागण में एक पौधे के परागकण उसी पुष्प या उसी पौधे के अन्य पुष्प के वर्तिकाग्र पर पहुँचते हैं जबकि पर - परागण में एक पौधे के पुष्प से परागकण उसी जाति के किसी दूसरे पौधे के पुष्प के वर्तिकाग्र पर पहुँचते हैं।
(10). मानव नर जनन तंत्र का नामांकित चित्र बनाइए ?

उत्तर-

(11). जब वस्तु अवतल दर्पण के वकता केन्द्र (C) तथा फोकस दूरी (F) के मध्य स्थित हो, तो बनने वाले प्रातिबिंब का किरण चित्र बनाइए ?
उत्तर-

(12). प्रकाश के परावर्तन के नियम लिखिए?

उत्तर- (i) आपतित किरण, परावर्तित किरण एवं अभिलम्ब तीनों एक ही तल में होते हैं।
(ii) आपतन कोण, परावर्तन कोण के बराबर होता है।
(13). चुंबकीय क्षेत्र रेखाओं के गुण लिखिए ?

उत्तर- (i) चुम्बकीय क्षेत्र रेखाएँ चुम्बक के बाहर उत्तरी ध्रुव से निकलकर दक्षिण ध्रुव में प्रवेश करती है। जबकि चुम्बक के अन्दर इनकी दिशा दक्षिणी ध्रुव से उत्तर ध्रुव की ओर होती है।
(ii) चुम्बकीय क्षेत्र रेखाएँ एक बंद वक्र का निर्माण करती है।
(iii) चुम्बकीय क्षेत्र रेखाएँ एक-दूसरे को कभी भी नहीं काटती है

क्योंकि एक बिन्दु पर चुम्बकीय क्षेत्र की दो दिशाएँ संभव नहीं हैं।
(14). लघुपथन क्या है ? लघुपथन से होने वाली हानि लिखिए।

उत्तर- जब विद्युतमय तार एवं उदासीन तार दोनों सीधे संपर्क में आते हैं,तो परिपथ का प्रतिरोध लगभग शून्य हो जाता है और इसमें से अत्यधिक धारा प्रवाहित होने लगती है इसी लघुपथन कहते हैं। हानि- लघुपथन से परिपथ में धारा का मान अत्यधिक हो जाता है, जिससे परिपथ जल सकता है तथा आग लग सकती है।
(15). खाघ श्रृंखला किसे कहते है? चार पोषी स्तरों वाली खाद्य श्रृंखला का उदाहरण लिखिए।
उत्तर- खाद्य श्रृंखला- जीवों की एक श्रृंखला जो एक- दूसरे का आहार करते हैं तथा विभिन्न जैविक स्तर पर भाग लेते है, आहार श्रृंखला का निर्माण करते हैं।
उदाहरण - घास \rightarrow चूहा \rightarrow सर्प \rightarrow बाज
खण्ड - स
(16). (i) वियोजन अभिक्रिया किसे कहते है? उदाहरण द्वारा समझाइए?
(ii) उष्मीय वियोजन को उदाहरण द्वारा समझाइए।

उत्तर- (i) वियोजन अभिक्रियाएँ- ऐसी रासायनिक अभिक्रियाएँ जिनमें कोई पदार्थ छोटे-छोटे पदार्थो या यौगिकों में विघटित हो जाता है, वियोजन अभिक्रियाएँ कहलाती हैं।
उदाहरणार्थ- कैल्सियम कार्बोनेट ऊष्पा के द्वारा विघटित होकर कैल्सियम ऑक्साइड तथा कार्बन डाइ उपचयित ऑक्साइड बनाता
है। $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}$
(ii) उष्मीय वियोजन - ऐसी रासायनिक अभिक्रिया जिसमें एकल अभिकर्मक ऊष्मा द्वारा अपघटित होकर छोटे-छोटे उत्पादों का निर्माण करता है उष्मीय वियोजन अभिक्रिया कहलाती है। उदाहरण-

$$
2 \mathrm{FeSO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{SO}_{3}(\mathrm{~g})
$$

अथवा

(i) रेडोक्स अभिक्रिया किसे कहते है ? उदाहरण द्वारा समझाए। (ii) आक्सीकरण तथा अपचयन में क्या अन्तर है ?

उत्तर- (i) रेडॉक्स अभिक्रया- किसी रासायनिक अभिक्रिया में एक पदार्थ का ऑक्सीकरण होता है तो दूसरे पदार्थ का अपचयन होता है अर्थात् एक पदार्थ ऑक्सीजन ग्रहण करता है तो दूसरा पदार्थ ऑक्सीजन का त्याग करता है अथवा एक पदार्थ हाइड्रोजन का त्याग करता है तो दूसरा पदार्थ हाइड्रोजन को ग्रहण करता है।
$\mathrm{CuO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}$
अत: ऐसे अभिक्रियाएं जिसमें ऑक्सीकरण व अपचयन दोनों साथ-साथ होता है, रेडॉक्स अभिक्रिया कहलाती है।
(ii) ऑक्सीकरण- वह रासायनिक अभिक्रिया जिसमें कोई पदार्थ ऑक्सीजन से संयोग करता है, ऑक्सीकरण कहलाती है।
जैसे- $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
वह रासायनिक अभिक्रिया जिसमें किसी पदार्थ से हाइड्रोजन का त्याग होता है, ऑक्सीकरण कहलाती है।

$$
H_{2} S \rightarrow H_{2}+S
$$

अपचयन- वह रासायनिक अभिक्रिया जिसमें कोई पदार्थ हाइड्रोजन से संयोग करता है, अपचयन कहलाती है। जैसे-
$\mathrm{Cl}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathrm{HCl}$

वह रासायनिक अभिक्रिया जिसमें किसी पदार्थ से ऑक्सीजन का त्याग होता है, अपचयन कहलाती है। जैसे-
$2 \mathrm{MgO} \rightarrow 2 \mathrm{Mg}+\mathrm{O}_{2}$
(17). (i) वृषण ग्रंथि द्वारा स्त्रावित हार्मोन का नाम तथा कार्य लिखिए?
(ii) पीयूष ग्रंथि द्वारा स्त्रावित हार्मोन का नाम व कार्य लिखिए ?

उत्तर- (i) वृषण ग्रंथि द्वारा स्त्रावित हार्मोन-टेस्टोस्टेरोन हार्मोन।
कार्य - (a)टेस्टोस्टेरॉन पुरूषों में द्वितीयक लैंगिक लक्षणों जैसे दाढ़ी, मूंछ तथा आवाज को नियंत्रण करता है।
(b) शुक्राणु के निर्माण में सहायक होता है।
(ii) पीयूष ग्रंथि द्वारा स्त्रावित हार्मोन- वृद्धि हार्मोन

कार्य - वृद्धि हॉर्मोन शरीर की वृद्धि और विकास को नियंत्रित करता है। यदि बाल्यकाल में इस हॉर्मोन की कमी हो जाती है तो व्यक्ति बौना रह जाता है, और यदि अधिकता हो जाती है तो व्यक्ति बहुत अधिक लंबे हो जाते है।

अथवा

(i) तंत्रिका कोशिका के विभिन्न भागों के नाम एवं कार्य
लिखिए?
(ii) मानव मस्तिष्क के तीन कार्य लिखिए।

उत्तर- (i) तंत्रिका कोशिका की निम्न भाग होते हैं -
(अ) कोशिका काय (ब) द्रुमिका (स) एक्सॉन
न्यूरॉन में गोलाकार संरचना कोशिका काय कहलाती है जिसमें एक केन्द्रक होता है। कोशिका काय पर अनेक छोटे प्रवर्ध, द्नुमिका कहलाते है एवं एक सबसे लम्बा प्रवर्ध एक्सॉन कहलाता है।
न्यूरॉन के कार्य - न्यूरॉन तंत्रिका तंत्र में एक सूक्ष्म उत्तेजनीय कोशिका है जो मस्तिष्क से सूचना का आदान-प्रदान और विश्लेषण करता है। यह कार्य एक विद्युत रासायनिक संकेत द्वारा होता है। (ii) मस्तिष्क के कार्य- मस्तिष्क जन्तुओं के केन्द्रीय तंत्रिका तंत्र का नियंत्रण केन्द्र है। यह उनके आचरणों का नियमन एंव नियंत्रण करता है। स्तनधारी प्राणियों में मस्तिष्क सिर में स्थित होता है। यह मुख्य ज्ञानेन्द्रियों, आँख, नाक, जीभ और कान आदि के कार्यो पर नियंत्रण करता है।
(18). मटर के लम्बे (प्रभावी) एवं बौने (अप्रभावी) लक्षणो वाले पौधों मे संकरण कराने पर F_{2} पीढी में प्राप्त सन्तति का लक्षण अनुपात रेखीय आरेख द्वारा स्पष्ट कीजिए?
उत्तर- जब एक जोड़ी विपर्यासी लक्षणों वाले जनकों (लम्बा व बौना) के मध्य क्रॉस कराया जाता है, एकल संकर संकरण कहलाता है। प्रथम पीढ़ी में जो लक्षण प्रकट होता है वह प्रभावी लक्षण होता है, जो लक्षण प्रकट नही होता वह लक्षण अप्रभावी कहलाता है। इस नियम को मेंडल का प्रभाविता का नियम कहा जाता है।

लक्षण प्ररूप अनुपात $=3 \cdot 1$
जीन प्ररूप अनुपात= $1: 2: 1$

अथवा
दिसंकर संकरण में F_{2} मे प्राप्त जीन अनुपात तथा लक्षण अनुपात को आरेख (चैकर बोर्ड) द्वारा समझाइए ?
उत्तर-

द्विसंकर संकरण में दो जोड़ी विपर्यासी लक्षणों वाले जनकों के मध्य संकरण करवाया जाता है, मेंडल ने देखा कि गोल-पीले बीज (RRYY) वाले पौधों का संकरण झुर्रीदार-हरे बीज (rryy) वाले पौधों से करवाया तो F_{1} पीढ़ी के सभी पौधे गोल व पीले बीज वाले थे F_{1} पीढ़ी के पौधों के बीच स्वपरागण कराया तो देखा F_{2} पीढ़ी में चार प्रकार के पौधे उत्पन्न हुए। लक्षणप्ररूप:- गोल-पीले बीज=9 गोल-हरे बीज= 3 झुर्रीदार-पीले बीज $=3$ झुर्रीदार - हरे बीज= 1
जीनप्ररूप:-1:2:1:2:4:2:1:2:1
(19). किन्ही दो दृष्टि दोषों के नाम, उत्पन्न होने के कारण एवं निवारण के उपाय लिखिए?
उत्तर- निकट दृष्टि दोष- इसमें व्यक्ति को निकट को वस्तु तो स्पष्ट दिखाई देती हैं, लेकिन दूर की वस्तु दिखाई नहीं देती।
कारण - लेंस की वक्रता का अधिक होना।

- नेत्र गोलक का लंबा हो जाना।

निवारण - अवतल लेंस का उपयोग।
(ii) दूर दृष्टि दोष- इसमें व्यक्ति को दूर की वस्तुएं तो स्पष्ट दिखाई देती हैं, लेकिन नजदीक की वस्तुएं स्पष्ट दिखाई नहीं देती है।

कारण- लेंस की फोकस दूरी का अधिक होना।

- नेत्र गोलक का छोटा होना।

निवारण - उतल लेंस का उपयोग

अथवा

(i) अन्तरिक्ष यात्री को आकाश का रंग काला क्यों दिखाई देता है ?
(ii) सूर्योदय तथा सूर्यास्त के समय सूर्य रक्ताभ दिखाई देता है, क्यो ? कारण स्पष्ट कीजिए।
उत्तर- (i) जब अंतरिक्ष यात्री अधिक ऊँचाई पर उड़ रहा होता है तब

उसके इर्द-गिर्द कोई वायुमण्डल नहीं होता है, अर्थात् उसके इर्दगिर्द के वायुमण्डल में वायु बहुत विरल होती है जिसमे धूल कणों का अभाव होता है। इसी कारण जब प्रकाश इस वायुमण्डल में से गुजरता है तो वह प्रकीर्णित नहीं होता है, जिस कारण अधिक ऊँचाई पर उडने वाले अंतरिक्ष यात्रियो को आकाश का रंग काला दिखाई देता है।
(ii) क्षितिज के समीप स्थित सूर्य से आने वाला प्रकाश हमारे नेत्रों तक पहुंचने से पहले पृथ्वी के वायुमण्डल में वायु की मोटी परतों से होकर गुजरता है। क्षितिज के समीप नीले तथा कम तरंगदैर्ध्य के प्रकाश का अधिकांश भाग कणों द्वारा प्रकीर्णित हो जाता है। इसलिए, हमारे नेत्रों तक पहुँचने वाला प्रकाश अधिक तरंगदैर्ध्य का होता है, जिससे सूर्योदय तथा सूर्यास्त के समय सूर्य का रंग लाल दिखाई देता है।

खंड- द

(20). (i) क्लोर क्षार अभिक्रिया किसे कहते है ?
(ii) जलीय सोडियम क्लोराइड के विद्युत अपघटन से प्राप्त उत्पादों के नाम तथा रासायनिक अभिक्रिया का संतुलित समीकरण लिखिए ?
उत्तर- (i) सोडियम क्लोराइड के जलीय विलयन से विद्युत प्रवाहित करने पर यह वियोजित होकर सोडियम हाइड्रॉक्साइड, क्लोरीन तथा हाइड्रोजन उत्पन्न करता है। इस प्रक्रिया को क्लोर-क्षार प्रक्रिया कहते हैं क्योंकि इससे निर्मित उत्पाद- क्लोरीन (क्लोर) एवं सोडियम हाइड्रॉक्साइड (क्षार) होते हैं।
(ii) उत्पादों के नाम- सोडियम हाइड्रोक्साइड, क्लोरीन तथा हाइड्रोजन

$$
2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{Cl}_{2}+\mathrm{H}_{2}
$$

अथवा

निम्नलिखित में किस रासायनिक पदार्थ का उपयोग किया जाता है ?
(i) पीने के जल को जीवाणु से मुक्त करने में-
(ii) रसोईघर में स्वादिष्ट खस्ता पकोडे बनाने में-
(iii) जल की स्थाई कठोरता दूर करने में-
(iv) खिलोने तथा सजावट का सामान बनाने में-

उत्तर- 1. विरंजक चूर्ण
2. सोडियम बाई कार्बोनेट
3.सोडियम कार्बोनेट
4.प्लास्टर ऑफ पेरिस
(21). (i) मानव में श्वसन वर्णक का नाम लिखिए?
(ii) वायवीय तथा अवायवीय श्वसन मे दो अन्तर लिखिए।
(iii) श्वसन की क्रियाविधि को समझाइए।

उत्तर- (i) हीमोग्लोबिन
(ii) वायवीय श्वसन:- यह O_{2} की उपस्थिति में होता है, इसमें उत्पाद CO_{2} व जल बनते है। इसमें ऊर्जा अत्याधिक मात्रा में बनती है। यह जीवों के माइट्रोकॉन्ड्र्या में होता है।
अवायवीय श्वसन:- यह O_{2} की अनुपस्थिति में होता है। इसमें उत्पाद इथेनॉल व कार्बन डाई ऑक्साइड बनते है।
इसमें अपेक्षाकृत कम ऊर्जा बनती है। यह कुछ जीवाणुओं, यीस्ट में होता है।
(iii) श्वसन क्रियाविधिः- श्वसन क्रिया को दो भागों में बाँटा

जाता है -

1. नि:श्वसन- इसमें बाहरी वातावरण से हवा फेफड़ों में प्रवेश करती है। जब पसलियो तथा डायाफ्राम की पेशियाँ सिकुड़ती हैं तो पसलियाँ ऊपर उठ जाती हैं व गुम्बदनुमा डायाफ्राम चपटा होकर वक्ष गुहा का आयतन बढ़ा देता है। इसके कारण फुप्फुस को फैलने का स्थान मिल जाता है, इससे फुफ्फुस का आयतन अधिक हो जाता है। बाहर वायुमण्डल का दाब अधिक होने से बाहर के वायुमण्डल से वायु खींचकर श्वास नली में होती हुई फुफ्फुस के वायुकोष में आ जाती है जिससे बाहर के वायुमण्डल का दाब और फुफ्फुस का दाब बराबर हो जाता है। वायु कोश पर फैली हुई रक्त की नलियों से गैसों का आदान-प्रदान हो जाता है। रक्त की नलियाँ वायु कोष में आई हुई वायु से ऑक्सीजन ले लेती हैं व कार्बन-डाइऑक्साइड वायुकोश में दे देती हैं।
2.उच्छवसन- अब डायाफ्राम की पेशियाँ व पसलियों की पेशियाँ पुनः अपनी स्थिति में आ जाती हैं जिससे वक्ष गुहा पर दबाव बढ़ जाता है और फुफ्फुस का आयतन कम हो जाता है, जिसके फलस्वरूप फुफ्फुस के वायुकोष की वायु श्वास नली से होती हुई बाहर निकल जाती है।

अथवा

(i) लार में कौनसा एंजाइम पाया जाता है ?
(ii) आमाशय स्त्रावित अम्ल के दो कार्य लिखिए ?
(iii) क्षुद्रांत्र में पाचन की क्रिया को समझाइए?

उत्तर- (i) लारीय एमाइलेज / टायालिन
(ii) अम्ल के कार्य -
(i) यह भोजन के माध्यम को अम्लीय बना देता है।
(ii) यह हानिकारक सूक्ष्मजीवों को नष्ट कर भोजन को रोगाणुरहित बनाता है।
(iii) यह निष्क्रिय एन्जाइम्स को सक्रिय करता है ।
(iii) क्षुदांत्र में पाचन- भोजन का पाचन मुख्यत: क्षुद्रान्त्र के ग्रहणी भाग में होता है। यह कार्बोहाइड्रेट, वसा तथा प्रोटीन के पूर्ण पाचन का स्थल है। इस कार्य के लिए यकृत तथा अग्न्याशय से पाचक रस प्राप्त करती है, यकृत से पित्त रस तथा अग्न्याशय से अग्न्याशय रस प्राप्त होता है। यकृत से स्रावितं पित्त रस में कोई पाचक एन्जाइम नहीं होता, परन्तु यह वसा के पाचन एवं अवशोषण में महत्त्वपूर्ण भूमिका निभाता है। पित्त रस क्षारीय प्रकृति का होता है जो आमाशय में आने वाले अम्लीय भोजन को क्षारीय कर देता है, साथ ही पित्त रस वसा की बड़ी गोलिकाओं को छोटी-छोटी गोलिकाओ में तोड़ देता है अर्थात् उसे इमल्सीकृत कर देता है, जिससे वसा पर एन्जाइम्स की क्रियाशीलता बढ़ जाती है।
आन्याशय से स्त्रावित अग्न्याशयी रस में निम्न एन्जाइम्स होते हैं
(i) ट्रिप्सिन - यह पेप्टॉन को पेप्टाइड में बदल देता है।
(ii) लाइपेज - यह इमल्सीकृत वसा को वसीय अम्ल तथा ग्लिसरॉल में बदल देता है।
इसके अतिरिक्त क्षुद्रान्त्र की दीवारों से आँत्रीय रस स्त्रावित होता है। इसमें उपस्थित एन्जाइम अंत में प्रोटीन के अमीनों अम्ल, जटिल कार्बोहाइड्रेट को ग्लूकोज तथा वसा को वसा अम्ल व ग्लिसरॉल में परिवर्तित कर देते हैं।
(22). (i) श्रेणी क्रम संयोजन में जुड़े प्रतिरोधों का तुल्य प्रतिरोध ज्ञात करने का सूत्र व्युत्पन्व कीजिए ?
(ii) 2 ओम तथा 4 ओम के दो प्रतिरोध 12 वोल्ट की बैटरी से श्रेणीक्रम में संयोजित है, परिपथ का कुल प्रतिरोध तथा प्रवाहित धारा का मान ज्ञात कीजिए?
उत्तर- (i) माना तीन प्रतिरोध $\mathrm{R}_{1}, \mathrm{R}_{2}$, व R_{3}, श्रेणीक्रम में संयोजित किये गए हैं। इस संयोजन में सभी प्रतिरोधों में से बहने वाली धारा का मान तो समान है परन्तु प्रत्येक प्रतिरोध के सिरों के मध्य विभवान्तर का मान अलग-अलग होता यदि प्रतिरोध $\mathrm{R}_{1}, \mathrm{R}_{2}$, व R_{3}, के सिरों के मध्य विभवान्तर $\mathrm{V}_{1}, \mathrm{~V}_{2}$, व V_{3} हो तथा परिपथ में प्रवाहित होने वाली धारा I है तो ओम के नियमानुसार R_{1} के सिरों पर विभवान्तर $V_{1}=I_{1} \quad R_{2}$ के सिरों पर विभवान्तर $V_{2}=\mathbb{R}_{2} \quad R_{3}$, के सिरों पर विभवान्तर $V_{3}=I_{3}$ यदि इन तीनों प्रतिरोधों का तुल्य प्रतिरोध R तथा इसमें प्रवाहित होने वाली धारा I तो R के सिरों पर विभवान्तर $V=I R$ तीनों प्रतिरोधों का कुल विभवान्तर
$\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}=\mathrm{IR}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$ $=I R=\left[R_{1}+R_{2}+R_{3}\right]=R=R_{1}+R_{2}+R_{3}$
(ii) श्रेणी क्रम संयोजन में कुल प्रतिरोध:- $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$

$$
\mathrm{R}=2+4 \quad \mathrm{R}=6 \text { ओम }
$$

परिपथ में बहने वाली कुल धारा:- ओम के नियम से-
$I=V / R$

$$
I=12 / 6 \quad I=2 \text { एम्पियर }
$$

अथवा

(i) घरेलू विद्युत परिपथ में विद्युत साधित्रों को पार्श्व क्रम में क्यों जोड़ा जाता है ? कोई दो कारण लिखिए।
(ii) 1500 वॉट का विद्युत हीटर प्रतिदिन 3 घंटे उपयोग में लिया जाता है, तो 4 रूपये प्रति यूनिट की दर से एक माह का विद्युत खर्च ज्ञात कीजिए । (${ }^{*} 1000 \mathrm{kWh}=1$ यूनिए)
उत्तर- (i) पार्श्व क्रम में प्रत्येक प्रतिरोध में प्रवाहित धारा का मान भिन्न होता है।
-पार्श्व क्रम में प्रत्येक प्रतिरोध के सिरों के मध्य विभवान्तर समान होता है। तुल्य प्रतिरोध का मान सबसे कम प्रतिरोध के मान से भी कम होता है।
(ii) हीटर में प्रतिदिन खर्च की गई ऊर्जा $=$ शक्ति \times समय

$$
=1500 \mathrm{~W} \times 3 \mathrm{~h}=4500 \mathrm{~Wh}
$$

एक माह (30 दिन) में खर्च की गई कुल विद्युत ऊर्जा-
$=4500 \times 30=135000 \mathrm{~Wh}$ या 13.5 kWh
या 13.5 यूनिट 4 रुपए प्रति यूनिट की दर कुल ऊर्जा खर्च $=4 \times 13.5=54$ रुपए।

